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1. Introduction

Agricultural system models have become important 
tools to provide predictive and assessment capability 
to a growing array of decision-makers in the private 
and public sectors. Despite ongoing research and 
model improvements, many of the agricultural models 
today are direct descendants of research investments 
initially made 30-40 years ago, and many of the ma-
jor advances in data, information and communication 
technology (ICT) of the past decade have not been fully 
exploited. This state of science is explained in part by 
the inevitable lag between invention of new ICT tools 
and their application, but also by an underinvestment 
in agricultural research, particularly in non-proprietary 
public good research, and in research aiming to im-
prove the well-being of poor, smallholder farm house-
holds in the developing world. At the same time, the 
private sector continues to utilize ICT developments – 
such as the recent advances in site-specific manage-
ment and in the use of “big data” – to improve produc-
tivity in large-scale commercial agriculture. The private 
sector is also making increasing proprietary use of ag-
ricultural systems models, taking advantage of public 
sector investments made in model development. Even 
in commercial applications, advances in data are rap-
idly exceeding analytical capability. Moreover, these 
proprietary developments are not in turn  contributing 
to the publicly available models, data or ICT tools for 
agricultural systems analysis. The result is that there is 
a large and growing gap between the potential uses of 
agricultural system models, particularly in the devel-
oping world, and their actual use. 

This gap between actual and potential model devel-
opments and uses presents an opportunity to invest in 
a new generation of agricultural systems models that 
could dramatically improve the quality of information 
available to agricultural decision-makers on the farm, 
as well as for those making private and public invest-
ment and policy decisions. A key innovation envisaged 
for this new generation of models is their linkage to a 
suite of knowledge products – which could take the 
form of mobile technology “apps” as well as online an-
alytical tools – that would enable the use of the models 
by a much more diverse set of stakeholders than is now 
possible. Because this new generation of models and 
their applications would represent a major departure 

from the current models that are largely based on an 
earlier wave of research investments, we call these new 
agricultural systems models and knowledge products 
“second generation” or NextGen.  

With support from the Bill and Melinda Gates Founda-
tion, leaders of the Agricultural Model Intercomparison 
and Improvement Project (AgMIP) organized a scop-
ing study to create a roadmap towards this new gen-
eration of agricultural systems models. In this intro-
duction, we describe the scoping study approach and 
introduce the Use Cases that were the basis for the 
study design and a stakeholder workshop. Accompa-
nying this introduction are four papers and a workshop 
summary. 

The NextGen scoping study brought together experts 
to review the current state of agricultural systems 
model science and to explore possibilities for ad-
vancing developments in models, data and informa-
tion technology. The scope of the study was limited to 
field, farm and landscape-scale analysis of agricultural 
production systems, and did not include other aspects 
of the food system such as distribution. A key element 
in the study design was to employ a set of Use Cases 
to motivate and guide each component of the study. 
A Use Case is a description of a ‘persona’ and their 
activities that motivate the generation of knowledge 
products. Three background papers were developed: 
a review of current state of agricultural systems mod-
els; a vision for NextGen models and their potential 
uses; and a plan for how ICT can be used to develop 
new knowledge products based on NextGen models 
over a 5-10 year time horizon.  The goal of the stake-
holder workshop was to vet the background papers, 
obtain additional ideas for Use Cases, and strategize 
how to bring together the growing community of actual 
and potential users of new agricultural systems knowl-
edge products with model and knowledge-product 
developers. The workshop was held in August 2014 at 
the Bill and Melinda Gates Foundation and brought to-
gether a diverse group of scientists and thought lead-
ers from the private and public sectors.1

1 See also Appendix - Next Generation Farming 
Systems Models Convening 
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2.  Towards a Computational Agricultural 
Science: Using Models to Accelerate 
Innovation

Our vision is for the new generation of agricultural sys-
tems models and knowledge products to accelerate 
progress towards sustainable food production and 
food security.  NextGen models can accomplish this 
goal by accelerating the rate of agricultural innovation 
that has increasingly been the source of productivity 
growth in agriculture. But given the stresses now being 
placed on the air, land, water and genetic resources on 
which human life depends, these innovations must also 
reduce environmental impacts and enhance the resil-
ience of food systems under changing climate condi-
tions. We foresee the use of NextGen models leading 
to “virtual” and “computational” agricultural research 
and development that can complement and substi-
tute to some degree for conventional real-time, on-
the-ground methods. Likewise, significantly improved 
data and models can contribute to development of 
advanced farm-management systems, and by making 
better information available about new systems, could 
accelerate the adoption and efficient use of more pro-
ductive and more sustainable technologies. Such data 
and models are also essential tools for assessing the 
landscape scale impacts of technologies, evaluating 
policies to improve resource management, and pro-
jecting the performance of technologies under chang-
ing climatic and other environmental conditions. 

This vision for NextGen is consistent with research 
on the past and likely future sources of productivity 
growth and increases in food commodity production.  
Research shows that since the agricultural revolution 
of the mid-20th century, the rate of productivity growth 
in agriculture has averaged about 2 percent per year, 
but this average masks large differences between 
the high and low-income countries, with productivity 
levels and growth particularly low in Africa. There is 
also evidence suggesting that cereal yield growth has 
been declining over the past several decades. More-
over, the evidence indicates that recent productivity 
growth has come increasingly from more productive 
use of inputs rather than from increasing the inten-
sity of input use (where intensity means the amount 
of non-land inputs per unit of land) (Fuglie and Wang 

2014). Much of the growth in food supplies will have to 
come from increases in productivity, not from increas-
ing the amount of land in agriculture in order to protect 
the dwindling areas of natural ecosystems. Thus, the 
challenge is to foster  innovations that will continue 
to be the key source of productivity growth as well as 
the basis for increases in total food production, even 
as they deliver sustainable agricultural systems under 
changing climate conditions.   

The current method for developing innovations in 
crops, livestock, and agricultural management is 
based almost entirely on conventional, time- and la-
bor-intensive experimental methods in which new va-
rieties and management practices are evaluated using 
field-scale experiments that may last for years. On-
farm management decisions still depend largely on in-
dividual farmer knowledge acquired through personal 
experience, supported in some cases by “expert” or 
more formalized decision support. These processes 
are slow to improve, even with advances in genetic 
techniques and information technology. Taken togeth-
er, these conditions suggest that, with appropriate in-
vestments, it may be possible to use simulation ex-
periments carried out with NextGen models to greatly 
reduce the need for conventional field experimentation 
and trial-and-error learning. These advances could 
increase the rate of agricultural innovation, and also 
increase the rate at which these innovations are suc-
cessfully adopted and implemented on farms. 

To meet the food security challenge of this century, we 
need not only to continue to innovate, but to do it wise-
ly – meaning, we need systems resilient to shocks and 
disruptions (including climate change) and that have 
smaller environmental footprints. Agricultural system 
models already play an essential role in assessing the 
broader environmental consequences of agricultural 
technologies. These consequences include long-term 
on-farm impacts on soil productivity, as well as off-
farm impacts on air and water quality and biodiversity. 
However, the scientific challenge in making these as-
sessments is great, and it is our judgment that sub-
stantial improvements are needed so that agricultural 
systems models, and the associated ICT platforms 
and knowledge products, will be able to support the 
goal of sustainable agricultural innovation.  For exam-
ple, NextGen models have the potential to improve un-
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derstanding of system resilience to extreme weather 
events and economic shocks, and more research and 
development is needed to realize this potential. 

3.  Meeting the Challenge: The Role of Use 
Cases

The next generation of agricultural systems models 
must be driven by the information needs of a wide array 
of stakeholders. To address this challenge, the author 
team developed a set of Use Cases to guide the work. 
The stakeholder workshop validated the authors’ Use 
Cases and developed additional ones2, since there is 
a diverse array of potential users of knowledge prod-
ucts supported by agricultural systems models. The 
five Use Cases proposed by the background paper 
author teams help guide the critical assessment of the 
current state of agricultural systems models, and stim-
ulate planning for new developments in models and 
knowledge products over a 5-10 year period of devel-
opment.  

The Use Cases were created to represent the array 
of likely users of knowledge products that are linked 
to NextGen models and data. In each of the scoping 
study papers, the use cases  illustrate the wide range 
of plausible situations for which models and knowl-
edge products can be used, highlight limitations of ex-
isting tools and data, and define the capabilities need-
ed in NextGen models and knowledge products. The 
five use cases represent two types of farming systems: 

Small-holder Farms: small-scale semi-subsistence 
farms typical of much of Africa and South Asia and 
other developing regions, many of which produce a 
mix of subsistence crops, cash crops, livestock, and, 
in some areas, aquaculture. 

Commercial Crop Enterprises: large-scale commer-
cially-oriented crop farms typical of the industrialized 
countries including the United States.

The Use Cases are designed according to the four cri-
teria indicated in Table 1. Narratives further defining 
the Use Cases are presented in Section 7 of this paper.

2 See also Appendix - Next Generation Farming 
Systems Models Convening

4. Background Papers: Implications

The background papers provide a number of insights 
into the state of agricultural systems science and 
how the agricultural science community could ad-
vance towards a new general of models and knowl-
edge products. 

First, it is clear that agricultural system models have 
become important tools to provide predictive and 
assessment capability to a growing array of deci-
sion-makers in the private and public sectors, including 
farmers, researchers, agribusiness, and policy-mak-
ers. However, the Use Cases demonstrate clearly that 
in most situations, the decision-makers need to access 
model outputs through knowledge management tools 
like mobile applications or personal computer dash-
boards. Users do not need or want direct interaction 
with models or model outputs; rather they need to be 
able to access information through intuitive interfaces 
that provide decision-relevant information rapidly at 
low cost. Yet, the review of the agricultural systems 
models in the background papers shows that few, if 
any, current agricultural systems models are designed 
to work with such applications. This insight from the 
Use Cases shows that there is a major gap between 
current model and knowledge product capability and 
what is needed to realize the NextGen vision. 

Second, the review of the current status of agricultural 
system models also shows that while many agricul-
tural system components are represented in simula-
tion tools, these models lack capabilities to address 
some of the key biophysical factors that limit yields 
as well as to represent management options and so-
cioeconomic conditions that need to be considered at 
field and farming systems scales, particularly in de-
veloping countries. Furthermore, models have mostly 
been developed along biophysical and socioeconom-
ic disciplinary lines without considering the need for 
integrating these component models to address con-
text-specific farming systems and assessment goals. 

Third, many of the major advances in data and in ICT 
of the past decade have not yet been fully exploited by 
available agricultural decision tools. This state of the 
science is explained in part by the inevitable lag be-
tween invention of new ICT and their applications, but 
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also by an underinvestment in agricultural systems re-
search, particularly in non-proprietary public good re-
search, and in research aiming to utilize ICT to improve 
the well-being of poor, smallholder farm households in 
the developing world. This gap between the current 
models and those that are both needed and possible 
due to recent advances in ICT presents an opportunity 
to invest in a new generation of agricultural systems 
models that could dramatically improve the quality of 
information available to agricultural decision-makers 
on the farm, as well as for those making private and 
public investment and policy decisions. 

A key innovation envisaged for this new generation of 
models would be their linkage to a suite of knowledge 
products – which could take the form of mobile tech-
nology “apps,” personal computer-based dashboards, 
and online analytical and communication tools – that 
would enable the use of the models by a much more 
diverse set of stakeholders and for a wider range of 
purposes than is now possible. 

5.  Towards a Next Generation of 
Agricultural Systems Models and 
Knowledge Products

The stakeholder workshop confirmed the need for a 
new generation of knowledge products serving the 

needs of decision makers that exploit recent advanc-
es in data, ICT, analytics, and data visualization. The 
development of these knowledge products should re-
spond to the needs of the rapidly growing user com-
munity, as exemplified by the study’s Use Cases. The 
stakeholders also encouraged the science community 
to build on the momentum from this scoping project 
and related current initiatives, to develop a focused, 
near-term strategy to demonstrate the value of poten-
tial advances in models and knowledge products.

Based on the background papers and stakeholder 
workshop, the authors have devised a strategy for 
NextGen agricultural systems models and knowl-
edge products. Following the background paper on 
the NextGen vision, as well as the discussions at the 
stakeholder convening, we envisage a two-pronged 
strategy that would facilitate the growth of two emerg-
ing and closely connected communities of science 
and practice:

• Knowledge Product Community: We see interest-
ed public and private organizations leading the 
development of a community of practice involv-
ing knowledge product developers and users, 
along with establishment of funding mechanisms 
that involve public institutions, private donors 
and the private-sector technology and agri-busi-
ness communities. 

Table 1. Characteristics of Five Use-Cases

1 2 3 4 5
Farm Extension in 

Africa
Developing and  

evaluation technolo-
gies for sustainable 

intensification.

Investing in agricul-
tural development 

projects that support 
sustainable  

intensification.

Management  
support for  
precision  

agriculture.

Supplying for 
products that meet 

corporate  
sustainability 

goals.

Farming System small-holder small-holder small-holder commercial corp commercial corp

Information User Farm advisor Agricultural  
research  

team/program

Analyst/adviser Management 
consultant

Corporate analyst

Beneficiaries Farm family Research institution/
farm population

NGO & clients Farm business Agri-business firm

Outcomes Improved livelihood 
(income,nutrition, 

food security)

Improved  
technology

Sustainable
technology

Income, soil  
conservation & water 

quality

Profit, risk man-
agement, sustain-
ability objectives

Use cases
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• Science and Data Integration Community: as an 
established leader in the agricultural modeling 
community of science, we see AgMIP and similar 
partner organizations playing a leadership role as 
conveners for the science community, to advance 
the agricultural systems science and data inte-
gration capabilities in close collaboration with the 
knowledge product community.  AgMIP and other 
organizations could work with public and private 
sector organizations to develop funding mecha-
nisms to support this component. 

We believe that the best way to move these concepts 
into implementation would be to create a NextGen pilot 
program. A key goal of this pilot program would be to 
explore how best to develop and bring these two com-
munities of science and practice together.  The largest 
unmet need is for better knowledge products that can 
advance investments in smallholder farming systems, 
particularly in Sub-Saharan Africa. Based on the Use 
Cases, we see the need for pilot activities at both farm 
and landscape scales. Each of the focus areas could 
be linked to current projects already in operation to 
provide grounding in real, on-the-ground development 
activities and to contribute to their uptake. 

6. The Background Papers

The three background papers and their authors are: 

Towards a New Generation of Agricultural System 
Models, Data, and Knowledge Products: State of 
Agricultural Systems Science   

Authors: J. W. Jones, J. M. Antle, B. O. Basso, K. J. 
Boote, R. T. Conant, I. Foster, H. C. J. Godfray, M. 
Herrero, R. E. Howitt, S. Janssen, B. A. Keating, R. 
Munoz-Carpena, C. H. Porter, C. Rosenzweig,  
T. R. Wheeler

Towards a New Generation of Agricultural System 
Models, Data, and Knowledge Products: Model  
Design, Improvement and Implementation

Authors: J. M. Antle, B. O. Basso, R. T. Conant,  
H. C. J. Godfray, J. W. Jones, M. Herrero, R. E.  
Howitt,  B.  A. Keating, R. Munoz-Carpena, C. 
Rosenzweig, P. Tittonell, T. R. Wheeler

Towards a New Generation of Agricultural  
System Models, Data, and Knowledge Products: 
Building an Open Web-Based Approach to Agricultural 
Data, System Modeling and Decision Support

Authors: S. Janssen, C. H. Porter, A. D. Moore, I. N. 
Athanasiadis, I. Foster, J. W. Jones, J. M. Antle

7.  The Use Case Narratives

The following Use Case narratives were developed 
collectively by the Background Paper authors. 

Case 1. Farm Extension in Africa

Jan is working as a farm extension officer in an area 
in Southern Africa where many farms are very small, 
incomes are very low, and farmers typically grow 
maize and beans as staple crops for their family’s sub-
sistence and to sell for cash. Some households may 
have livestock and/or grow vegetables. The aim of the 
extension service is to help farmers achieve higher and 
more stable yields of maize and also to advise them 
on improving their nutrition so that they obtain suffi-
cient protein and micronutrients for healthy families. 
Jan obtains information on new varieties of maize and 
beans that are now available to farmers in the area. 
These new varieties are more drought and heat-tol-
erant and the bean varieties are more resistant to a 
common foliar disease. Jan also has information on 
how to improve nutrient management of these crops 
using small doses of inorganic fertilizer along with an-
imal manure and crop residues. He also has informa-
tion on a new technique developed by the CGIAR to 
partially harvest rainfall to increase water availability 
to the field and vegetable crops. Because farms vary 
in size, labor availability, soils, and other characteris-
tics, Jan wants to use the NextGen tools to help tailor 
advice to each farm family that is practical, likely to 
be adopted, and provide the best outcome in terms 
of more stable production, higher income, and better 
nutrition. Jan obtains information from the farmer to in-
put into his smart phone, which has NextGen On-Farm 
Information apps, developed for the farming systems 
of his region, that help him determine combinations of 
system components that best fit specific-farm situa-
tions. He also has extension information sheets written 
in the local language that describe the components of 
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crop and farming systems that are likely to succeed 
with the farm family. In turn, data from the individual 
farms that Jan works with are returned to the NextGen 
model platform to allow for continuous improvement 
of the tools.

Case 2. Developing and Evaluating 
Improved Crop and Livestock Systems  
for Sustainable Intensification

Debora is a plant breeder/geneticist working on de-
veloping a drought- and heat-tolerant hybrid of maize. 
She would like to be able to evaluate the potential 
adoption and impact of maize varieties with particular 
characteristics across the widely varying conditions in 
Africa. She realizes, however, that maize is only one 
part of the complex farming systems used by most 
farmers, which typically involve multiple crops and 
livestock. She would like to be able to evaluate the 
potential of new varieties in these complex systems, 
rather than evaluating maize by itself as had been typ-
ically done by most research programs. Moreover, she 
would like to know whether the new varieties meet 
the goals being set up for sustainable intensification, 
such as improving productivity not just in the short 
term, but taking longer-term impacts on soils, water, 
and greenhouse gases into account. Working with 
a team of colleagues at her research institution, she 
uses the NextGen Technology Adoption and Impact 
Assessment Tool for this purpose. This tool integrates 
the genetic characteristics of the maize varieties with 
soil, weather, economic and social data representing 
the farm populations where the new varieties could be 
used. The research team then simulates the potential 
for adoption and impacts of the new varieties, pro-
viding Debora with guidance for the kinds of genetic 
modifications that would be most valuable to farmers, 
and also provide an assessment of the long-term sus-
tainability of the systems. 

Case 3. Investment in Agricultural 
Development to Support Sustainable 
Intensification

Stanley is an investment manager for a prominent 
Foundation, and he needs to evaluate a project for 
small farms in Kenya that will increase the intensity of 

production by increasing fertilizer use per hectare on 
cash crops while maintaining the current sustainable 
nutrient balance between pasture grasses, crop resi-
dues and animal manure.

Before authorizing a project that combines extension 
information and fertilizer subsidies, Stanley wants 
to evaluate whether the higher crop yields would in-
duce a non-sustainable system once the initial pe-
riod of fertilizer subsidies and extension was com-
pleted. Initially he uses the NextGen data and crop 
and livestock model components to assess the yield 
and labor impacts of increased yields. An economic 
assessment model is used to estimate if the current 
cropping balance will change under the new fertilizer 
program and if increased fertilizer costs can be more 
than compensated by increase in cash crop yields in 
the long run. A long-term farm-level nutrient balance 
under increased intensification will show whether 
the new system is sustainable. Stanley would like to 
evaluate these results under a range of assumptions, 
and present these to local decision makers so that 
they share common expectations and uncertainties. 
For this he uses the NextGen Project Assessor, which 
opens as a webpage on his computer, and he sets 
up a new assessment, enters data supplied with the 
project proposal, and links this to general data lay-
ers available in the tool. The  Project Assessor then 
uses the configuration of NextGen model compo-
nents (both biophysical and socioeconomic) needed 
to conduct the specific assessment.

Case 4. Management Support for 
Precision Agriculture in the US for 
Profitability, Soil Conservation and Water 
Quality Protection

Greg is a farmer in the US, with a large corn/soy-
bean-based operation and a high level of mecha-
nization fully equipped with auto-tracking system 
and high-resolution differential GPS. His tractors are 
equipped with on-the-go sensors for variable appli-
cations of seeding, fertilizer, pesticide, and herbicide. 
Harold is Greg’s precision agriculture consultant. Greg 
receives weekly updates on his smart-phone and tab-
let from Harold’s Precision Agriculture Company about 
the status of his crops obtained from drone flights and 
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crop model predictions using a combination of ob-
served and forecasted weather. Harold’s analysis re-
lies on the NextGen models that are able to deliver 
strategic and tactical crop management strategy rec-
ommendations, process-based variable rate prescrip-
tions for fertilizer/pesticide/herbicide application, and 
accurate harvest recommendations. The variable-rate 
prescription map created by Harold’s company is 
cloud-based and is automatically integrated in Greg’s 
tractor’s automated system for variable rate applica-
tion of inputs. This system allows Greg to track all the 
activities performed in the field and link them to the 
harvested product. 

Case 5. Supplying Food Products that 
Meet Corporate Sustainability Goals 

Jennifer is an economic analyst in a corporate sustain-
ability group. This group has embarked on efforts to 
make sustainability the core of their mission: market-
ing food while conserving resources. She is assessing 
the life-cycle of food products to find ways to con-
serve energy, save water, minimize waste and reduce 
greenhouse gas emissions in an effort to make these 
products more sustainable from farm to fork.  Using 
a web service, Jennifer works with her analysis team 
to access the NextGen Supply System Assessment 
Tool. This tool uses real-time weather and historical 
climate conditions to identify strategies that will opti-
mize the amount of fertilizer to be used across many 
locations by the corporations enter into contracts with 
farmers with the goal of increasing yield and reducing 
greenhouse gas emissions. Using remote-monitoring 
solutions, as an integral part of the Next-Gen model 
platform, along with advanced cloud services, Jennifer 
can help the corporation’s contract farmers with de-
cisions regarding when to plant, when to irrigate and 
when and how much fertilizer to apply.
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Executive Summary

The goal of this paper is to summarize the background and current state of agricultural system models, methods 
and data that are used for a range of purposes. It summarizes a history of events that contributed to the evolution 
of agricultural system modeling. It includes process-based bio-physical models of crops and livestock, statistical 
models based on historical observations, as well as economic optimization and simulation models at household 
and regional to global scales. This history is followed by an overview of the characteristics of agricultural systems 
models and the wide range of purposes that various researchers in different disciplines had when developing and 
using them. These purposes have led to systems being defined, modeled and studied at a wide range of space 
and time scales. We also summarize the capabilities and limitations associated with these models, data, and 
approaches relative to what may be needed for next generation models. This is done for different “Use Cases” that 
cover a range of purposes and scales and that are illustrative of those needed for future applications in developing 
and developed countries. These Use Cases include models at field, community/landscape, and national scales for 
use in improving policies and decisions aimed at increasing productivity and improving food and nutrition security 
at local to national and global scales under changing climate conditions. 
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1. Introduction 

The world has become more complex in recent years 
due to many factors, including our growing population 
and its demands for more food, water, and energy, 
the limited arable land for expanding food production, 
and increasing pressures on natural resources. All 
of these factors are further compounded by climate 
change that will lead to many changes in the world as 
we have known it (e.g., Wheeler and von Braun, 2013). 
How can science help address these complexities? 
On the one hand, there is a continuing explosion in 
the amount of published information and data contri-
butions from every field of science. On the other hand, 
the problem of managing it all becomes more diffi-
cult and leads to information overload. The informa-
tion explosion is leading to greater recognition of the 
interconnectedness of what may have been treated 
earlier as independent components and processes. 
We now know that interactions among components 
can have major influences on responses of systems, 
hence it is not sufficient to draw conclusions about 
an overall system by studying components in isolation 
(Hieronymi 2013). These interactions transcend tradi-
tional disciplinary boundaries. Although there contin-
ues to be a strong emphasis on disciplinary science 
that leads to greater understanding of components 
and individual processes, there is also an increasing 
emphasis on systems science.

Systems science is the study of real world “systems” 
that consist of components defined by specialists. 
These components interact with one another and with 
their environment to determine overall system behav-
ior (e.g., see Wallach et al. 2014). These interacting 
components are exposed to an external environment 
that may influence the behavior of system components 
but the environment itself may not be affected by the 
changes that take place within the system boundary. 
Although systems are abstractions of the real world 
defined for specific purposes, they are highly useful 
in science and engineering across all fields, includ-
ing agriculture. An agricultural system, or agro-eco-
system, is a collection of components that has as its 
overall purpose the production of crops and raising 
livestock to produce food, fiber, and energy from the 
Earth’s natural resources. Such systems may also 
cause undesired effects on the environment. 

Agricultural systems science is an interdisciplinary 
field that studies the behavior of agricultural systems. 
Although it is useful to study agricultural systems in 
nature using data collected that characterize how a 
particular system behaves under specific circumstanc-
es, it is impossible or impractical to do this in many situ-
ations. Scientific study of an agro-ecosystem requires 
a system model of components and their interactions 
considering agricultural production, natural resourc-
es, and human factors. Thus, models are necessary 
for studying overall agro-ecosystem performance for 
specific purposes. Data are needed to develop, eval-
uate, and run models so that when a system is stud-
ied, inferences about the real system can be stimulated 
by conducting model-based “experiments”. When we 
consider the “state of agricultural systems science”, it 
is thus important to consider the state of agricultural 
system models, the data needed to develop and use 
them, and all of the supporting tools and information 
used to interpret and communicate results of agricultur-
al systems analyses for guiding decisions and policies.

Agricultural system models play increasingly important 
roles in the development of sustainable land manage-
ment across diverse agro-ecological and socioeco-
nomic conditions because field and farm experiments 
require large amounts of resources and may still not 
provide sufficient information in space and time to 
identify appropriate and effective management prac-
tices. Models can help identify management options 
for maximizing sustainability goals to land managers 
and policymakers across space and time as long as 
the needed soil, management, climate, and socioeco-
nomic information is available. They can help screen 
for potential risk areas where more detailed field stud-
ies can be carried out. Decision Support Systems 
(DSS) are computer software programs that make use 
of models and other information to make site-specif-
ic recommendations for pest management (Michalski 
et al. 1983; Beck et al. 1989), farm financial planning 
(Boggess et al. 1989; Herrero et al. 1999), manage-
ment of livestock enterprises (e.g., Herrero et al. 1998; 
Stuth and Stafford-Smith 1993), and general crop and 
land management (Plant 1989, Basso et al. 2013).  
DSS software packages have mainly been used by 
farm advisors and other specialists who work with 
farmers and policymakers, although some are used 
directly by farmers.  
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In this paper, we provide a critical overview of past 
agricultural systems science followed by a look toward 
next generation models and approaches. In this first 
white paper, we discuss the state of agricultural system 
science relative to current and future needs for models, 
methods and data that are required across a range of 
public and private stakeholders. We start this paper 

with an overview of major events that happened during 
the last 50+ years that led to an increased emphasis 
on agricultural systems science. This timeline identi-
fies key drivers that led to the increasing interest and 
investments in agricultural system models, demon-
strates the complexities of most of the issues, and 
illustrates a range of purposes. This is followed by an 

Timeline of Significant Events

1950-1970s

1964-1974
International 
Biological Program 

1965-1970

1969-1982

1972-1974
Soviet Union 
purchase  of US 
wheat reserves

1980            Soil and 
Water Resources 
Conservation Act 

1980s 1983-1993

1981-1984

1980s

1984-present

1986

1990

1991-present

1993-2011

1998

2000s

1990s-2010s

1980s-1990s

1990s-2000s

2006

2005-2009

2005-2010

2000’s

2010

(2010s

2013-present

1960-1970

1974-1978

1982-1986

2001-2003

Foundational
Science

Developed 

Ecology & 
Policy Needs 

Identi�ed 

Satellite & 
Communication 
Technologies 

Enhanced

Personal 
Computing & 

Internet 
Revolution 

Begins

Sustainable 
Agriculture 
Movement 

Initiated

Sustainable
Ag Movement

Initiated

Sustainable 
Agriculture 
Movement 

Initiated

1950 1960 1970 1980 1990 2000 2010 2020

1965

1990-present

1980’s

1950’s deWit and
van Bavel early 
computational 
analysis of plant and 
soil processes 

Demand for policy 
analysis of rural 
development 

Pioneer water 
balance modeling   

UK releases animal 
nutrient require-
ments for modeling 
livestock  

The molecular 
genetics revolution

Publication of �rst 
IPCC climate 
change assessment

Sustainable 
agriculture move-
ment; environmen-
tal concerns

AgMIP (Agricultural 
Model Intercompar-
ison and Improve-
ment Project) 
created

Increasing 
realization of food 
security challeng-
es, feeding > 9 
billion people

CERES, GRO, and 
SARP Models 
initiated (USA and 
Netherlands)

USAID-funded 
tech transfer 
IBSNAT project

Development of 
economic models 
for risk management

Emphasis on 
integration of 
livestock models at 
farm to national & 
global scales

Australia develops 
new APSRU group 
for applied modeling

International 
Consortium for 
Agricultural Systems 
Applications 
(ICASA),

European Society 
Agronomy publica-
tion on modeling 
ag systems

Increasing interests 
by the private 
sector in ag 
models

2010s
Increasing 
successes in 
combining crop 
models and 
molecular genetics

Representation of 
CO2 effects in crop 
models challenged

Increasing interest 
in GHG mitigation, 
ecosystem 
services

EU funding of the 
SEAMLESS project

Development of 
Earth system 
model components 
of GCMs

Construction and 
release of global 
datasets for ag 
system modeling

          Initiation of 
open source 
software movement

Dutch support of 
SARP, rice model 
development

Launch of IGBP by 
International 
Council for Science

Regional to global 
collaborative 
modeling efforts 
initiated (US and 
Australia –cotton), 
BSSG, IBP, IPM)

Early crop 
models-photosyn-
thesis and growth

            Development 
in duality theory, 
nonlinear optimi-
zation

New CGIAR Center 
assessment of 
economic returns 
to investments

1970s
Development of 
early livestock herd 
dynamics models

1970s
Early work on 
simulation-based 
decision support 
systems

1970s
G. Conway devel-
oped Integrated 
Pest management 
systems concepts

Internet, world 
wide web 
development

See Table 1 for more key 
events and descriptions 

FAO developed 
Land Evaluation 
& Agroecological 
zoning methods  

1976 Launch of 
the �rst issue of 
Agricultural 
Systems journal

Personal Computer 
revolution led by 
IBM and Apple

Figure 1. Summary timeline of selected key events and drivers that influenced the development of agricultural 
system models. Additional details and key events are provided in Table 1 and in the text.
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overview of the characteristics of agricultural systems 
models and the wide range of purposes that various 
researchers in different disciplines have had when 
developing and using them. These purposes have led 
to systems being defined, modeled and studied at a 
wide range of space and time scales. We also summa-
rize capabilities and limitations of these models and 
the data and approaches needed for applying them 
to address important user goals. This is done using 
“Use Cases” introduced in the paper by Antle et al. 
(2015 this volume) that cover a range of purposes and 
scales and are illustrative of those needed for future 
applications in developing and developed countries. 
These Use Cases include the ways actual practitioners 
employ agricultural system models at field, community/
landscape, and national scales for improving policies 
and decisions that are aimed at increasing productivity 
(e.g., via sustainable intensification approaches) and 
improving food and nutrition security at local to nation-
al and global scales. 

2.  Brief History of Agricultural System 
Modeling

The history of agricultural system modeling is charac-
terized by a number of key events and drivers that led 
scientists from different disciplines to develop and use 
models for different purposes; Figure 1 summarizes 
these major events. Some of the earliest agricultural 
systems modeling (Table 1) was done by E. Heady 
and his students to optimize decisions at a farm scale 
and evaluate the effects of policies on the econom-
ic benefits of rural development (Heady 1957; Heady 
and Dillon 1964). This early work by economists during 
the 1950s through the 1970s helped to inspire addi-
tional economic modeling since that time. The work 
of Dent and Blackie (1979) included models of farming 
systems with economic and biological components; 
their book provided an important source for various 
disciplines to learn about agricultural systems model-
ing. Soon after agricultural economists started model-
ing farm systems, the International Biological Program 
(IBP) was created. This led to the development of vari-
ous ecological models, including models of grasslands 
during the late 1960s and early 1970s, which were also 
used for studying grazing of livestock. The IBP was 
inspired by forward-looking ecological scientists to 
create research tools that would allow them to study 

the complex behavior of ecosystems as affected by 
various environmental drivers (Worthington 1975; Van 
Dyne and Anway 1976).

Models of agricultural production systems were 
first conceived of in the 1960s. One of the pioneers 
of agricultural system modeling was a physicist, 
C. T. de Wit of Wageningen University, who, in the 
mid-1960s, believed that agricultural systems could 
be modeled by combining physical and biological 
principles. Another pioneer was a chemical engineer, 
W. G. Duncan, who had made a fortune in the fertiliz-
er industry and returned to graduate school at age 58 
to obtain his PhD degree in Agronomy, after which he 
began creating some of the first crop-specific simu-
lation models (for corn, cotton, and peanut). Work by 
de Wit and Duncan intrigued a number of other scien-
tists and engineers who started developing and using 
crop models. In 1969, a regional research project was 
developed in the USA to develop and use produc-
tion system models for improving cotton production, 
building on the ideas of de Wit, Duncan, and Herb 
Stapleton, an agricultural engineer. Thus, some of the 
first crop models were curiosity-driven with scientists 
and engineers from different disciplines thinking out 
of the box, so to speak, and inspiring others to get 
involved in a new, risky research approach. During 
this early time period, most agricultural scientists were 
highly skeptical of the value of quantitative, systems 
approaches.

In 1972, the development of crop models received a 
major boost after the US government was surprised 
by very large purchases of wheat by the Soviet Union, 
causing major price increases and global wheat short-
ages (Pinter et al. 2003). New research programs were 
funded to create crop models that would allow the 
USA to use them with newly-available remote sens-
ing information to predict the production of major 
crops that were grown anywhere in the world and 
traded internationally. This led to the development of 
the CERES-Wheat and CERES-Maize crop models by 
Joe Ritchie and his colleagues in Texas (Ritchie and 
Otter 1984; Jones and Kiniry 1986). These two models 
have continually evolved and are now contained in 
the DSSAT suite of crop models (Jones et al. 2003; 
Hoogenboom et al. 2012). 
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During much of the time since the 1960s, very small 
fractions of agricultural research funding were used 
to support agricultural system models, although the 
Dutch modeling group of C. T. de Wit was a notable 
exception (Bouman et al., 1996). Thus, most of those 
who were modeling cropping systems, for example, 
struggled to obtain financial support for the exper-
imental and modeling research needed to develop 
new models or to evaluate and improve existing ones. 
Instead, there were other “crisis” events or realizations 
of key needs fueling model development (Table 1), 
each typically leading to infusion of additional financial 
support over short durations of time for model devel-
opment or use. 

The concept of Integrated Pest Management emerged 
in the 1970s, in particular from the work of Gordon 
Conway on the pests and diseases of plantation crops 
in Malaysia (see Conway 1987). In 1972, the so-called 
Huffaker Integrated Pest Management (IPM) project 
was funded in the USA to address the major problems 
associated with increasing pesticide use and develop-
ment of resistance to pesticides by many of the target 
insects and diseases (Pimentel and Peshin 2014). 
Mathematical models of insect pests and crop and 
livestock diseases had been developed in the first half 
of the 20th century, though the success of synthet-
ic agrichemicals led to a shift in attention from other 
control measures in the years after the Second World 
War. The Huffaker project infused funds for developing 
insect and disease models of several crops, combined 
with experimental efforts aimed at reducing pesti-
cide use and more effective use of all measures to 
prevent economic damage to major crops in the USA. 
This project continued until 1985 (as the Consortium 
for IPM after 1978). Coincident with this project was 
a major increase in the sophistication of population 
dynamic models in ecology and a growing apprecia-
tion of the importance of non-linearities and the prob-
lems for forecasting they imply (May, 1982).  Lively 
debate about the appropriate way to model ecological 
interactions in agricultural settings characterized these 
decades.

Globally, the FAO and various countries were also 
promoting IPM, with modeling as one of the approach-
es used to understand how to manage pests and 
diseases with minimal pesticide use. During this time 

period, a number of insect and disease dynamic 
models were developed, and some were coupled with 
cotton and soybean crop models (Wilkerson et al., 
1983; Batchelor et al. 1993), including the SOYGRO 
model that is now in DSSAT (Jones et al. 2003). This 
period of time also led to the development of a general 
framework for coupling crop models with insect and 
disease information to estimate impacts on growth 
and yield (Boote et al. 1983).

Due to increased emphasis on interdisciplinary 
research of agro-ecosystems and the need to publish 
scientific advances in this area, a new journal was 
launched in 1976 – Agricultural Systems, edited by C. 
R. W. Spedding (1976). This journal helped legitimize 
agricultural system modeling, providing a place for 
scientists to publish their agricultural systems model-
ing and analyses, creating a collection of scholarly 
work in this area. Through its publication examples, it 
has provided encouragement for agricultural systems 
research to authors across all agricultural science 
disciplines.

The work started by the early pioneers has continued to 
evolve throughout the years. Notably, the Wageningen 
University has carried on the legacy of C. T. de Wit 
by training many agricultural system modelers and by 
developing a number of crop models that are still in use 
today (Bouman et al. 1996; van Ittersum et al. 2003). 
Similarly, some of the early work of Duncan, Ritchie, 
and others has evolved and contributed to the wide-
ly-used DSSAT suite of crop models through collabora-
tive efforts among the University of Hawaii, University 
of Florida, Michigan State University, the International 
Fertilizer Development Institute, Washington State 
University, and others (Tsuji et al. 1998; Jones et al. 
2003; Hoogenboom et al. 2012).

There were other notable government-funded initia-
tives in the U.S., Netherlands, and Australia that led to 
major developments of crop, livestock, and econom-
ic models. This includes the 1980 US Soil and Water 
Conservation Act that led to development of the EPIC 
model that is still in use today (Williams et al. 1983, 
1989), the USAID-funded IBSNAT project that led to 
the creation of the DSSAT suite of crop models that 
incorporated the CERES and CROPGRO models 
(Jones 1993; Boote et al. 1998; Jones et al. 2003; 
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Hoogenboom et al. 2012), and the Systems Analysis 
of Rice Production (SARP) project funded by the Dutch 
government starting in 1984 that led to the develop-
ment of the ORYZA rice crop model, now widely used 
globally (Bouman et al. 2001). Another major event was 
the development of the SEAMLESS project, funded in 
2005 and operating for 5 years. This effort led to major 
collaboration among agricultural systems modelers 
and scientists across Europe for development of new 
data interfaces and models, and to development and 
integration of models at field, farm, and broader spatial 
scales, including cropping system and socioeconomic 
models (van Ittersum et al. 2008).

The evolution of economic models for different scales 
and purposes progressed steadily during the last five 
decades (Table 1). These developments were fueled 
by various needs at national and international levels 
as well as innovations in modeling approaches by the 
agricultural economics community. The needs includ-
ed mandates of CGIAR Centers to evaluate returns on 
investments in research for development, the increased 
interest in liberalizing global agricultural trade, the eval-
uation of ecosystem services, and impacts of climate 
change and adaptation (Rosenzweig and Parry 1994; 
Curry et al. 1990; Thornton et al. 2006; Nelson et al. 
2009). This steady progress included the development 
of agricultural risk management analyses, evaluation of 
national, regional and global policies, and integration 
of other models with economic models for more holis-
tic assessments, including crop, livestock, grassland, 
and hydrology models (Havlik et al. 2014; Nelson et al. 
2013; Rosegrant et al. 2009; de Fraiture et al. 2007).

In parallel with these events that brought significant 
funding into development and use of agricultural 
system models, other events also contributed signifi-
cantly to this evolution. The introduction of the first 
IBM personal computer (PC) in 1981 and the Apple 
Mac computer in 1984 led to widespread availability 
of computers during the 1980s.  Afterward, individual 
researchers could work with agricultural system models 
that were being made available on personal computers 
or develop their own models. This PC revolution led to 
many innovations in other fields that have contributed 
to modeling of agricultural systems, such as comput-
er graphics, statistical analysis, GIS, and other soft-
ware being made available on desktops, notebooks, 

and smart phones. In addition, the development of the 
internet and world-wide web in the 1980s ushered in a 
new era of communication and technologies that led to 
greater collaboration among scientists and more rapid 
development of agricultural models.

Another innovation in computer software development 
is noteworthy. In 1998, the concept of open source 
software was developed. As the agricultural systems 
science community is evolving, we are finding consid-
erable interest in creating open-source agricultural 
system models, with modular components and with 
interfaces to common databases. Already, at least 
one cropping system model is being offered as open 
source by DSSAT, which allows free access to the 
model source code for anyone to make changes and 
submit them for possible inclusion in the official model 
version (i.e., Cropping System Model (CSM) in DSSAT; 
www.dssat.net). 

In parallel to funded initiatives, scientists started creat-
ing consortia and networks to enhance collaboration for 
specific purposes. One example was the International 
Consortium for Agricultural Systems Applications 
(ICASA; Bouma and Jones 2001), which was formed in 
1993 and developed data standards for use with crop 
models (Hunt et al. 1994; White et al. 2013). Another 
key development was in the construction and release 
of global datasets of cropping areas, sowing dates, 
yields, and other management inputs (Ramankuty and 
Foley 1999; You et al. 2006; Monfredda et al. 2008; 
Ramankutty et al. 2008; Fritz et al. 2013). A milestone 
was reached when these global cropland cover prod-
ucts were developed and used for regional and global 
analyses of agricultural systems. Without access to 
data for developing, testing, and applying the agricul-
tural system models, they are not effective.

Several events in Table 1 are associated with climate 
change in various ways that individually and collectively 
contributed strongly to advances in agricultural system 
models. An early contributor to modeling climate 
change impacts was the International Geosphere-
Biosphere Program (IGBP), formed in 1986. This glob-
al project led to increasing interest in climate change 
and the use of models to assess what likely impacts 
might be under future climate conditions. Included in 
this work was a project on agriculture (Global Change 
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and Terrestrial Ecosystems, or GCTE; Steffen and 
Ingram 1995). This project led to collaboration among 
crop modelers, who were beginning to see the need 
for comparing different models (e.g., Jamieson et al. 
1998). An early motivation for model use in climate 
change research was the publication of the first IPCC 
assessment report on climate change (IPCC 1990). 
This led to the use of crop, livestock, and econom-
ic models to assess climate change impacts on agri-
culture as well as agricultural adaptation and mitiga-
tion options (Rosenzweig and Parry 1994). This then 
prompted crop modelers to incorporate CO2 effects on 
crop growth and yield if this effect was missing, and 
to use the models to perform simulation experiments 
using current and future projected climate conditions 
(e.g., Curry et al. 1990; Tubiello et al. 2002; Waha et al. 
2013). These changes in crop productivity were used 
in socioeconomic models to evaluate impacts on agri-
cultural trade, food prices, and distribution of impacts 
(e.g., Rosenzweig and Parry 1994; Adams et al. 1990; 
Fischer et al. 1995). Many studies have been conduct-
ed since the first work that was led by Rosenzweig, 
Parry, and others, in particular to provide information 
for subsequent IPCC assessments as well as various 
national and regional assessments (Fischer et al. 1995; 
Rosenzweig and Parry 1994; Parry et al. 2004). 

Unfortunately, these assessments used existing 
models, and funding did not provide support for 
improving and evaluating the models. Long et al. 
(2006) challenged the findings of crop models that had 
been developed using older data, particularly results 
suggesting that the positive fertilization effects of CO2 
would offset the negative effects of rising temperature 
and lower soil moisture. Much more data are now avail-
able from FACE (Free Air CO2 Experiments) and T-FACE 
(Temperature FACE) experiments to more comprehen-
sively evaluate and improve the interactive effects of 
temperature, soil moisture, and CO2 in current models 
(Kimball, B. A. 2005; Boote et al., 2010). This is one 
of the goals of the Agricultural Model Intercomparison 
and Improvement Project (AgMIP; see www.agmip.
org; Rosenzweig et al. 2013a). 

The creation of AgMIP in 2010 is another major mile-
stone in the evolution of agricultural models. This 
initiative created a global community of agricultur-
al system modelers with the goals of intercomparing 

and improving crop, livestock, and socioeconomic 
models, and using the improved models for assessing 
impacts and adaptation to climate change and climate 
variability at local to global scales, including assess-
ing uncertainties of those assessments (e.g., see 
Asseng et al. 2013; Bassu et al. 2014; Rosenzweig et 
al. 2013b). Since its start, AgMIP has created collabo-
ration among virtually all agricultural modeling groups 
globally, creating new opportunities for substantially 
improving abilities to understand and predict agricul-
tural responses to climate, including interacting effects 
of CO2, temperature, and water. 

Finally, the increasing interest in improving the repre-
sentation of the Earth’s land area in regional and global 
climate models has led to new approaches for model-
ing agricultural systems (Osborn et al. 2007). This has 
led various modeling groups to develop models that 
represent CO2, water, and GHG fluxes and also crop 
growth and yield of grid-cell areas (e.g., Fischer et 
al. 1995; Rosenzweig et al. 2013b; Elliott et al. 2014). 
On the livestock side, global gridded models for feed 
consumption, productivity, manure production, and 
greenhouse gas emissions for dairy, beef, small rumi-
nants and pork and poultry are now available (Herrero 
et al. 2013; FAO 2013).

Two recent events shown in Table 1 have the potential 
for major advances in modeling agricultural systems, 
but these impacts have yet to be realized. The first one 
is the molecular genetics revolution. During the last 
20 years, the progress in mapping genomes of major 
crops has been impressive, and the technological 
advances in performing DNA analyses on plants and 
animals have led to rapid and inexpensive genotyp-
ing that resulted in major changes in plant breeding. 
The potential value of this molecular genetics informa-
tion includes the abilities of crop and livestock models 
to predict performance of crop varieties and animal 
breeds in specific climate and management condi-
tions. Early work on this has shown that it is promis-
ing, yet considerably more work is needed to quanti-
tatively link genes to physiological performance (e.g., 
see White and Hoogenboom 1996; Hoogenboom and 
White 2003; Messina et al. 2006; Hammer et al. 2006). 
The molecular biology revolution is also leading to the 
development of new genetic strategies for pest and 
disease control that are likely to be ready for regulato-
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Year Event Impacts
1940s - 1950’s deWit (1958) and van Bavel (1953) 

develop early computational 
analyses of plant and soil 
processes; Development of 
nutritional requirement tables for 
cattle (NRC 1945)

Foundation established for the application of simulation 
and operations research optimization in plant-soil 
systems research and for modeling farm animal 
responses to nutrients

1950 – 1970s Demand for policy analysis of rural 
development

Representative farm optimization models were 
developed and applied by Heady and students at 
Iowa State University, thus establishing use of linear 
programming methods for agricultural production

1960-1970 Pioneers in soil water balance 
modeling (WATBAL) [Slatyer (1960, 
1964), Keig and McAlpine (1969); 
Ritchie (1972); McCown (1973)]

Water balance models proved to be useful in the 
evaluation of climatic constraints to agricultural 
development. Foundations for linking soil and plant 
models established.

1964-1974 International Biological Program Strong emphasis on large scale ecological and 
environmental studies led to development of grassland 
ecosystem models; laid foundation for ongoing work 
today

1965 UK releases nutrient requirement 
tables for ruminants (ARC 1965, 
first work since the 50s)

Very influential publication; subsequent development of 
feeding systems models throughout Europe.

Table 1. Timeline of key events that shaped the development and use of agricultural system models.

ry study in the next decade, and this may lead to new 
demands for systems models to explore their efficacy 
and safety.

The second entry in Table 1 that holds unrealized 
promise is greater collaboration among public and 
private researchers.  For example, the private sector 
invests heavily in data collection as part of their plant 
breeding process. Some companies have shown inter-
est in providing some of those data for use in evalu-
ating and improving models in the public sector (e.g., 
Gustafson et al. 2014; Kumudini et al. 2014). In addi-
tion, private companies realize that agricultural system 
models are becoming more widely used in assess-
ing sustainability of new technologies. This is seen 
through the creation of CIMSANS (see www.ilsi.org/
ResearchFoundation/CIMSANS), a new public-private 
partnership in the International Life Sciences Institute 
to address sustainable agriculture and nutrition securi-
ty using agricultural models). Finally, the private sector 
is heavily invested in molecular genetics usage in plant 

breeding, and some companies are making use of crop 
models in their plant breeding efforts (e.g., Messina et 
al. 2011). This provides an opportunity for public and 
private researchers to work together to produce more 
reliable models of crops and breeds for greater use of 
these methods in the future.  

Other events have contributed to development of 
specific agricultural models in different countries. 
We do not attempt to create a comprehensive list of 
all such events, but instead to highlight those that 
played major roles in getting this work started in addi-
tion to those that had major implications globally. 
Between events in Table 1, model development and 
use proceeded, but overall progress has been slow at 
times. The continued dedication to develop reliable 
models has been one of the main features of sever-
al agricultural modeling efforts for cropping systems, 
livestock, and economics (e.g., DSSAT, EPIC, APSIM, 
STICS, WOFOST, ORYZA, CROPSYST, RZWQM, TOA, 
IMPACT, SWAP, and GTAP).
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1965-70 Early crop modeling pioneers 
develop photosynthesis and growth 
models (C. T. de Wit, W. G. Duncan, 
R. Loomis)

Captured imagination of many crop and soil scientists. 
Prompted many to follow in their steps.

1969-75 S-69 Cotton Systems Analysis 
Project (Bowen et al. 1973; 
Stapleton et al. 1973; Jones et 
al.1974; Baker et al. 1983) 

Prompted development of several cotton models (W. G. 
Duncan, J. D. Hesketh, D. Baker, J. Jones, J. McKinion) 

1971 Creation of the Biological System 
Simulation Group (BSSG)

Led to self-supported annual workshops aimed at 
advancing cropping system and other biological system 
models, continuing through 2014

1970s and 
early 80s

Development of early herd 
dynamics simulation models (Freer 
et al. 1970; IADB 1975; Davis et 
al. 1976; ILCA 1978; Sanders and 
Cartwright 1979, Konandreas and 
Anderson 1982)

Established in the developed world but some early 
examples in the developing world. Crucial for the 
advancement of whole livestock farm modeling and for 
representing disease and reproductive impacts 

1970s Gordon Conway develops 
concept of IPM in Malaysia.  
Huffaker Integrated Pest 
Management (IPM) Project 
begins in USA, evolves into the 
Consortium for IPM, ending 
in 1985. Global emphasis on 
reducing pesticide use, due to 
major increases in pesticide use 
globally and resistance in target 
pest populations. 

Insect and disease models developed and used to help 
establish economic thresholds and to predict timing of 
threshold exceedance; some pest models were linked 
with crop models

Mid 1970s Discovery of chaos in ecological 
systems (May, 1976)

Led to new approaches to modeling predator-prey, 
host-disease interactions 

1972-74 Soviet Union purchase of US wheat 
reserves, causing major price spike 
(see Pinter et al. 2003)

US Government created LACIE, AGRISTARS projects 
to develop and use crop models with remote sensing 
to obtain strategic crop forecasts. Led to development 
of CERES-Wheat and CERES-Maize models (first 
published in 1986)

1974-1978 FAO development of Land 
Evaluation Framework in 1974 and 
an automated Agro-Ecological 
Zoning (AEZ) in 1978. (FAO 1976; 
1978-81)

Provided first methodology for land evaluation on a 
global basis, integrating soil, climate, vegetation, and 
socio-economic factors, leading to many applications 
and efforts to improve integrated assessment 
approaches

1975-1982 Early pioneers in computer 
simulation based decision support 
- SIROTAC and Australian Cotton 
Industry (CSIRO 1980)

This was the first major initiative to put crop and pest 
models in the hands of farmers for decision support
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1976 Launch of the first issue of 
Agricultural Systems, edited by C. 
R. W. Spedding (Spedding 1976)

This journal helped legitimize agricultural system 
modeling, providing a place for scientists to publish 
their agricultural systems modeling and analyses as 
well as a collection of scholarly work in this area.  
This journal continues today with impact factor of  
about 2.5

1979 E.R. Orskov establishes the ‘Dacron 
bag technique’ for measuring the 
degradability of feed in the rumen 
(Orskov and McDonald 1979)

Very influential method developed for characterizing 
the nutritional value of feeds, opening possibilities 
of new types of models; a new era of dynamic feed 
characterization started, leading to better animal 
models

1980 Soil and Water Resources 
Conservation Act analysis for 1980, 
mandate to develop a model to 
predict impacts of soil erosion on 
crop productivity

The comprehensive soil-cropping system model, (EPIC, 
the Environmental Policy Integrated Climate model), 
was developed to estimate soil productivity as affected 
by erosion 

1980s Growth of CGIAR Centers creates 
demand for assessment of 
economic returns to investments in 
agricultural research

Market surplus methods developed for estimating 
economic returns to investments, demonstrating high 
returns to agriculture research investment

1981-1984 Personal Computer (PC) revolution 
led by IBM introduction of its Model 
5150 personal computer and  the 
first Apple Mac computer in 1984

These new PCs  led to major increases in individual 
access to computer power; many agricultural models 
began appearing on PCs

1981 Development of the first soil 
nitrogen (N) model for predicting 
crop responses under both water 
and N limiting conditions  
(Seligman and van Keulen 1981)

This model was the foundation for future soil N models 
in APSIM, DSSAT, and other suites of crop models

1980s through 
early 1990s

Development and growth of the 
Internet that began to connect 
computers globally

Ushered in new era of global communication and 
information technologies that has affected all areas 
of our lives, including agricultural system model 
development and use

1982 to 1986 CERES Models (Maize and 
Wheat) and GRO (SOYGRO and 
PNUTGRO) models were developed 
(Wilkerson et al. 1983; Boote et al. 
1986)

The CERES models linked soil water, soil nitrogen and 
crop growth and yield together in a comprehensive 
fashion for the first time. They stimulated interest and 
activity in crop modeling in many parts of the world..

1980s Development of duality theory and 
advances in nonlinear optimization 
via development of GAMS by World 
Bank

Led to advances in applications of econometric 
methods for production model estimation and to 
national and regional policy analysis models; use of 
new entropy methods reduced data requirements for 
the models
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1980-1990 Influential developments in pasture 
modeling (Hurley pasture model – 
Johnson and Thornley 1983) and 
the SAVANNA model (Cougenhour 
et al. 1984)

Led to a proliferation of pasture models for intensive 
temperate and tropical grasslands and savanna 
systems. These models simulated herbage mass and 
accounted for sward components, which led to a more 
sophisticated representation of grazing processes. 

1983-1993; 
DSSAT 

continuing 
today

USAID funded international IBSNAT 
project for facilitating technology 
transfer using systems approaches 
and crop and soil models

This led to the creation of the DSSAT suite of crop 
models that combined the CERES family of models with 
the SOYGRO and PNUTGRO models. The availability 
of the IBSNAT guidelines for data collection for crop 
modeling strengthened the crop model testing effort 
around the world.

1984 – 
continuing 

today

Dutch Government funding of the 
SARP (Systems Analysis of Rice 
Production) project at IRRI in the 
Philippines. 

Development of a dynamic rice model that later 
was named ORYZA, which is still widely used today 
(Penning de Vries et al. 1991)

1985-1992 Earliest application of crop-soil 
systems models in a developing 
country “research for development” 
context – Kenya-Australia Dryland 
Farming Systems Project (McCown 
et al. 1992, Keating et al. 1991)

First PC used in agricultural research in Kenya 
running CERES Maize (influenced strongly by the 
IBSNAT minimum data set guidance) in 1985. Formed 
the foundation for modeling low input subsistence 
agricultural systems and exploring development 
opportunities. This experience went on to strongly 
influence the evolution of the APSIM farming systems 
simulator.

1986 Launch of the IGBP (International 
Geosphere-Biosphere Program) 
by the International Council for 
Science (ICSU)

Brought attention to the planet under pressure, 
including climate change, and helped coordinate 
research at regional and global scales on 
interactions of Earth’s biological, chemical, physical, 
and human systems, including influence on 
ecosystem modeling

1970s-1980s Development of optimization 
and econometric methods for 
application to production risks

Broadened analysis of production to include risk 
management behavior

1980s until 
now

Modelling herd replacement 
decisions with dynamic 
programming (van Arendonk and 
Dijkhuizen 1985)

As computer power increased, more complex 
applications attempting to optimize intensive and 
industrial livestock production occurred.

1990 Publication of the first 
Intergovernmental Panel on Climate 
Change (IPCC) Assessment Report

Led to first use of crop and economic models for 
climate change impact assessments on crops at field 
to global-scales (e.g., Curry et al. 1990; Rosenzweig 
and Parry 1994); led to broad use of agricultural and 
ecological models that estimate GHG emissions and 
carbon dynamics and economic models for assessing 
impacts of climate change on agriculture
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1990s until 
now

The era of livestock systems model 
integration (Herrero et al 1996, 
1999, Freer et al. 1997)

Many soft ‘modular’ couplings of simulation models of 
individual animal performance, herds dynamics, pasture 
and crop models happened at this time. 

1990-1994 First studies on global impacts 
of potential climate change on 
agricultural systems (Rosenzweig 
and Parry 1994)

These were the first studies making broad use of 
crop and economic models for global impacts. These 
studies paved the way for many other national and 
global impact studies of climate change impacts and 
adaptation.

1991- 
continuing 

today

Australian governments develop 
a new APSRU group for modeling 
agricultural systems for practical 
uses

This led to the now widely used APSIM (McCown et 
al. 1996; Keating et al. 2003) suite of cropping system 
models which drew on early experience with CERES, 
EPIC and PERFECT models but re-engineered the 
“farming systems” foundations.

1992 The Cornell Net Carbohydrate and 
Protein System is launched (Russell 
et al. 1992)

The CNCPS became the first commercially 
available dynamic model of digestion in ruminants. 
Its development influenced the current livestock 
performance models in many parts of the world. 

1993-2011 International Consortium for 
Agricultural Systems Applications 
(ICASA), formed in 1993, ended in 
2011

Helped crop modelers collaborate to develop standards 
for input data for crop models (Hunt et al. 1994), leading 
later to the ICASA data dictionary and data standards 
(White et al. 2013), now used in harmonizing model 
inputs in AgMIP project (White et al. 2013).

1998 Initiation of open source software 
movement, leading to more 
collaborative software development

Led to interest in providing open-source versions of 
widely-used crop simulation models; now being done 
by some ag system modelers (e.g., APSIM, DSSAT).

1999 The Livestock Revolution study 
(Delgado et al. 1999)

Key analysis explaining projected growth of livestock 
sector showing that ‘as people get richer and societies 
urbanize they consume more livestock’. Led to 
acknowledgement of need for increased understanding 
of livestock sector for agricultural development.

1980s-1990s Interest in trade liberalization Led to quantitative analysis of trade policies and 
development of national and global agricultural trade 
policy models.

1990s-2010s The molecular genetics revolution: 
Genome sequencing technological 
advances and advances in 
understanding of the functions of 
crop and animal genes; ability to 
genotype new lines and breeds

Led to still evolving efforts by various public crop 
modeling groups and by seed companies to connect 
ecophysiological crop models for plant breeding 
and management purposes (e.g., see White and 
Hoogenboom 1996, Hoogenboom and White 2003; 
Hammer et al. 2006; Messina et al. 2006).

1990s-2000s Sustainable agriculture movement; 
greater concern on environmental 
consequences of agriculture

Led to incorporation of biophysical processes into farm 
household, econometric and programming approaches; 
also led to development of “tradeoff analysis” 
approach; spatial data and tools increasingly used to 
develop spatially explicit biophysical and economic 
models
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Late 1990s 
- 2000s

Construction and release of global 
datasets of cropping areas, sowing 
dates and yields (Ramankutty and 
Foley 1999, Ramankutty et al. 2008)

Allowed researchers to run simulations at finer 
resolution over greater model domains with more 
clearly documented assumptions and inputs.

2000s Increasing interest in greenhouse 
gas (GHG) mitigation and the 
importance of ecosystem services

Led to models for analysis of mitigation of GHG in 
agriculture via soil C sequestration, afforestation, 
reduced livestock emissions; also led to linkages of 
economic models with crop, livestock, hydrology, and 
ecosystem models.

2001-2003 European Society Agronomy 
meeting hosts special session 
on modeling cropping systems. 
Published as Volume 18 European 
Journal Agronomy

This meeting led to a special issue of European 
Journal of Agronomy (vol 18) in which comprehensive 
papers on the major modeling systems, namely 
DSSAT, APSIM, CROPSYST, STICS, Wageningen 
models. Over 2000 citations for models in this 
publication.

2006 Representation of CO2 effects in 
crop model simulations challenged 
by Long et al. (2006)

Opened a debate between plant experimenters 
and modelers on the skill of crop models for yield 
prediction in future climates; prompted interest in more 
evaluations of CO2 effects interacting with temperature, 
other factors

2005-2009 European Union funding of the 
System for Environmental and 
Agricultural Modeling: Linking 
European Science and Society 
(SEAMLESS)

This led to major collaboration across Europe for 
developing models for use across scales, from field to 
farm, country, and EU levels.

2005-2010 Development of Earth system 
models, components of general 
circulation models (GCMs)

Led to new methods for coupling crop simulation 
models to land surface schemes of numerical climate 
models; Challinor et al. 2004.

2006 FAO Livestock’s Long Shadow 
report (Steinfeld et al. 2006)

Demonstrated the large environmental footprint of 
livestock leading to programs for assessing and 
reducing the environmental impacts of livestock. Most 
of this work was done through modeling.

mid 2005s 
onwards

Development of global livestock 
models (Bouwman et al. 2005; FAO 
2013, Herrero et al. 2013)

Global integrated assessment of livestock systems 
now possible at high resolution including land use, 
emissions, economics, biomass use and others (Havlik 
et al. 2014; Cohn et al. 2014, PBL 2013, Bouwman et 
al. 2013 and others) and their links to other sectors 
(crops, forestry, energy, etc.).

2010 Creation of the Agricultural Model 
Intercomparison and Improvement 
Project (AgMIP), a global program 
and community of agricultural 
scientists

This initiative led to model comparisons and initiatives 
for improving models, capturing the imagination and 
interest of agricultural modelers worldwide (Rosenzweig 
et al. 2013a,b; Asseng et al. 2014).
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3.  Characteristics of Agricultural System 
Models

3.1 Purposes for Model Development

There are two important motivations for agricultural 
model development; scientific understanding, and deci-
sion/policy support (e.g., Boote et al. 1996; Bouman et 
al. 1996; van Ittersum et al. 2003; Ritchie 1991; McCown 
1996). The first of these motivations is to increase basic 
scientific understanding of components of agricultural 
systems or understanding of interactions that lead to 
overall responses of those systems. Van Ittersum et al. 
(1998) referred to models with this purpose as explan-
atory. Models developed to increase scientific under-
standing tend to be mechanistic models as they are 
usually based on known or hypothesized control of 
physical, chemical, and biological processes occurring 
in crop or animal production systems. Examples are 
mechanistic models of photosynthesis (e.g., Farquhar 
et al. 1980) and water movement in soils (e.g., model 
implementation of the Richards (1931) equation). 

At the basic science level, models developed to 
increase understanding are used as tools to address 
research questions about control of processes, 
magnitudes of responses, and interactions. Modeled 
outputs are compared with those that are measured 
in the laboratory or field for testing the understanding 
that is embedded in the model. For example, trans-
port of water or mineral N through a soil involves many 
processes that affect the correct balance of water or 
N. Likewise, the flux of carbon dioxide in a field can 
be measured instantaneously in flux-site experiments. 
There are, however, many contributors to CO2 flux 
including photosynthesis, aerial crop respiration, root 

respiration, and soil organism respiration, all of which 
are affected by the aerial and soil environment as well 
as by crop type, age, and condition. For livestock, the 
partitioning of nutrients for different physiological func-
tions (growth, lactation, pregnancy and others) and the 
control of voluntary feed intake as well as their inter-
actions and feedbacks have received considerable 
attention (Forbes, 1986; Illius and Allen, 1994). Such 
models, developed to increase scientific understand-
ing typically describe processes at fine time scales 
(e.g., instantaneous photosynthesis and transpiration 
processes, hourly nutrient supply in animals). 

Such explanatory models of agricultural systems typi-
cally include a large number of parameters, some of 
which may be unknown or only known with relatively 
large uncertainties. And they may require other explan-
atory input information that may not be readily available 
for general applications, such as the spatial variations 
in the relationship between soil water and water poten-
tial. Also, uncertainties in some of the hypotheses and 
assumptions used in developing mechanistic models 
make outputs uncertain and often less useful to those 
outside of the model development group. Functional 
models (Addiscott and Wagenett 1985; Ritchie and 
Alagarswamy 2002), which may also be referred to as 
phenomenological models (developed by using data to 
model relationships), are based on empirical functions 
that approximate complex processes, such as a crop’s 
interception of energy using plant leaf area (as an indi-
cator of biomass) and radiation use efficiency (RUE 
– a measure of biomass produced per unit of radia-
tion intercepted). This type of function requires field 
data to estimate RUE and usually produces reason-
able results when compared to field measurements. 
Another example of an empirical approach is the simu-

2010s Increasing interests by the private 
sector in agricultural system models

Some companies create their own crop modeling 
teams, others start working in public-private 
collaborations.

2013 – Increasing realization of the need 
to increase food production to 
meet needs of > 9 billion by 2050, 
including challenges of climate 
change and sustainability of natural 
resources

This realization is leading to greater interest in use of 
agricultural system models to help guide investments 
and development and to greater interest by the private 
sector.
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lation of potential evapotranspiration using the well-
known functional Penman-Monteith or Priestley-Taylor 
equations (Allen et al. 1998), which have been used 
successfully for decades even though they are highly 
simplified compared to more mechanistic evapotrans-
piration models. 

Explanatory models may include various combinations 
of mechanistic and functional model components. 
The choice of relationships used by different model-
ing groups to represent processes and components is 
one of the main reasons that there have been multiple 
models developed of the same crop, livestock, and 
farming systems. For these reasons, currently devel-
oped agricultural system models have different levels 
of complexity, different parameters and input require-
ments, and vary in their abilities to predict system 
performance. This has been demonstrated recently 
by the AgMIP wheat and maize model intercompari-
son studies that found large variations among multiple 
wheat and maize model yield predictions. The median 
of multiple models was a better predictor of crop yield 
across multiple sites than any single model in these 
studies (Asseng et al. 2013; Bassu et al. 2014). 

The second overall purpose for developing models, to 
provide information for supporting decisions and poli-
cies, requires models that describe how the agricul-
tural system responds to the external environmental 
drivers as well as decisions or policies under consider-
ation (referred to as descriptive models by van Ittersum 
et al. 1998). Users of such models may be interested 
in prediction of important responses that would help 
them make a decision, or they may be interested in 
how the system would respond if a particular deci-
sion was made. They may want to analyze alternative 
designs of agricultural systems or explore responses 
to different policies at crop, livestock, farm, or regional 
scales (Thornton and Herrero 2001; van Ittersum et al. 
1998). Such models may or may not increase scientif-
ic understanding and they may have varying degrees 
of explanatory mechanisms, but the key requirement 
is that the models provide reliable system response 
information that decision and policy makers need. 

Models for increasing scientific understanding of agri-
cultural systems will continue to be pursued using 
various scales and approaches. While these models 

form the basis for the decision-enabling modeling, our 
focus is on next generation agricultural system models 
for use in planning and strategic decision analyses. A 
key task is the evaluation of tradeoffs among possibly 
conflicting objectives of decision/policy makers at vari-
ous levels, from field and pasture to farm, landscape, 
and regional scales, and for smallholder to large indus-
trial scale farmers. 

3.2  Approaches for Modeling Agricultural 
Systems

Several dimensions are needed to describe the types 
of models that have been developed in the past for use 
in improving decisions and policies. Here we discuss 
the major types of models that produce response 
outputs that are of interest to decision/policy makers. 
First, statistical models have been developed using 
historical data sets on system responses, such as crop 
yield, milk production, and prices of commodities. For 
example, statistical models — fitting a function to 
predict crop yield using observed weather variables 
and crop regional yield statistics over multiple years 
— were the first crop models used for large-scale yield 
estimations. Average regional yields were regressed 
on time to reveal a general trend in crop yields 
(Thompson 1969). It is assumed that the data used to 
create statistical models are samples of a population 
such that the model can be used to predict regional 
yields in a new years with different weather patterns. In 
general, results of statistical models cannot be extrap-
olated to other places because of variations in soils, 
landscapes, management, and weather not included 
in the population of information from which the statis-
tical relationship was derived. Furthermore, they are 
not well suited to estimate climate change impacts in 
the future because they cannot capture changes in 
management (adaptation), soil properties, pests and 
diseases, and the influence of increasing atmospher-
ic CO2 concentrations (beyond the range of historical 
data). Despite these limitations, statistical models 
are still very useful. When sufficient data are avail-
able to develop such models; they can provide many 
insights about historical influences on past yields and 
can inform other kinds of models (Lobell et al. 2011; 
Schlenker et al. 2013).

A widely used approach for modeling agricultural 
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systems can be classified as dynamic system simu-
lation models. In contrast to the statistical approach, 
these models have functions that describe the chang-
es in systems states in response to external drivers 
(e.g., weather and management practices), and how 
those changes are affected by other components in 
the system (see Wallach et al. 2014). This approach is 
used for all types of models, including crop, livestock, 
and farming system models, with model outputs 
being the values of model state variables over time 
(e.g., typically daily outputs for crop and pasture 
models). These dynamic models can be used to simu-
late multiple responses for the specific time and vari-
ables as needed (Wallach et al. 2014), and thus can 
compare effects of alternative decisions or policies 
on tradeoffs among those various responses. These 
dynamic system models may have mechanistic and 
functional components. Examples of dynamic models 
for cropping systems are those in the DSSAT suite of 
models (Jones et al., 2003), and APSIM (Keating et 
al. 2003), CROPSYST (Stockle et al. 2003), and EPIC 
(Williams et al. 1983, 1989). However, because some 
of these models are very complex, containing many 
descriptive variables and parameters thus requiring 
many inputs and long run times, some authors have 
shown that reduced form or summary models can be 
derived from much more complex models for specific 
purposes (e.g., Jones et al. 1999; Chikowo et al. 2008; 
Dzotsi et al. 2013). This approach is particularly useful 
when one wants to integrate crop models, for exam-
ple, into models of more comprehensive agricultural 
systems such as economic analyses at farm, national, 
or global scales. 

Similarly, dynamic livestock models include Ruminant 
(Herrero et al 2013, 1996); LiveSim (Rufino et al 2009); 
CNCPS (Ruitz et al. 2002), Grazplan (Freer et al. 1997), 
GLEAM (Gerber et al. 2014), amongst others, and 
farming system models include IMPACT-HHM (Herrero 
et al 2007), Gamede (Vayssieres et al 2011); IAT (Lisson 
et al. 2010); APSFARM (Rodriguez et al. 2014), and 
FARMSIM (Van Wijk et al. 2009). For a detailed review 
see van Wijk et al. (2014). 

One other point to make about the use of models for 
decision-making is the type of decision being consid-
ered. To date, many models have been developed to 
help inform tactical decisions, such as when to apply 

a pesticide, when to irrigate, or when to sell livestock. 
However, the models that are most useful for those 
kinds of decisions are narrow in scope. They are not 
about how to best manage a crop for multiple inputs 
over a full growing system altogether, but simply when 
to perform those predetermined management oper-
ations. They only predict when a particular threshold 
is reached that has previously been shown to provide 
effective management. To address these broader 
decisions, a cropping system model might be used to 
develop Apps in the future for use on smart phones or 
other hand held devices (e.g., see www.agroclimate.
org; Fraisse et al. 2006; Janssen et al. 2015 – paper 3 
in this series). 

For planning and strategic decisions, it is clear that 
multiple responses and tradeoffs need to be tested. 
Dynamic models of component subsystems (e.g., 
simulating daily growth and partitioning of biomass) 
can be used to represent functional responses (e.g., 
end of season grain, biomass yield, or residues in 
response to a range of nitrogen fertilizer use). Ideally, 
such model-simulated responses can be used to infer 
responses by real systems. Virtual experiments (simu-
lations) using the models can thus complement real 
experiments, but there is a need to evaluate model 
responses relative to real system responses for a range 
of conditions to establish confidence in the model and 
also provide a measure of uncertainty. In the past, very 
little has been done to establish uncertainty of agricul-
tural systems models until recently (e.g., Rosenzweig 
et al. 2013; Asseng et al. 2013). 

3.3  Spatial and Temporal Scales of 
Agricultural System Models 

Users of models or information derived from them and 
the models themselves vary considerably across scales 
as indicated in Figure 2. Similarly, the scope of the 
system being modeled and managed varies depend-
ing on the questions being asked and the decisions 
and policies that are being studied. Users in Figure 2 
are not necessarily those who run the models; instead, 
they are those who want information about respons-
es of the systems to different ways of managing them 
in whatever physical, biological, and socioeconomic 
climate conditions are involved. Thus, for example, a 
set of simulation experiments would be conducted by 
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a researcher or advisor to address specific questions 
about alternative decisions or policies to help them 
make more informed decisions. Results from the simu-
lation experiments could be summarized into advisory 
fact sheets or policy briefs for users. Or, results could 
be summarized in decision-support systems that are 
designed to provide information for key decisions of 
users (e.g., see www.agroclimate.org that targets 
extension agent and farmer users). Participatory 
modeling, where the development of a model is 
accomplished by model developers and stakehold-
ers working together and discussing model results to 
refine simulations and better represent stakeholders’ 
objectives, has also been used successfully with many 
farming communities (Thornton and Herrero 2001; 
McCown 2002).

3.3.1 Field Scale 

The scope of the system is important in determin-
ing what type of model is needed and what users 
are being targeted. Agricultural system models have 
been developed at all of the scales shown in Figure 
2. The system could be at the field scale where one 
wants to know the best management practices that 
meet production, profitability, and environmental 
protection goals of a farmer who is producing the 
crop in an area with strict environmental regulations 
(e.g., He et al. 2012). Cropping system models are 
used to predict how much economic yield the crop 
will produce and how much nutrient leaching would 

occur under different combinations of management 
practices and crop seasons. Similarly, the system 
could be a livestock-system managed by a rancher or 
dairyman. Livestock models are designed to predict 
herd or animal performance under different combina-
tions of breeds and management. They may predict 
the number of livestock of different ages by sex and 
the body mass, or milk production per day of each 
lactating cow, all influenced by herd management and 
marketing of meat, calves, and/or milk. Thus, at the 
field or enterprise level, biophysical models are used 
to analyze responses similar to the way that experi-
ments on the real systems would be analyzed. In many 
cases, these models are used to perform simulation 
experiments in combination with limited treatments in 
real experiments to help provide confidence in simulat-
ed experiment results when extending them to a wider 
range of options than could be tested in the real world.

Field scale models usually assume homogene-
ity of conditions horizontally across the field, but 
may consider that the soil properties vary vertically 
with depth. Spatially homogeneous models are also 
referred to as “point” models implying that all points in 
a field area have the same properties. These point or 
field models (e.g., crop models) are also used to simu-
late responses at more aggregate scales by providing 
them with spatially-varying inputs (e.g., spatially-vari-
able vertical soil properties, daily weather data, and/
or management). For example, a crop model may be 
used to simulate multiple homogeneous fields across 

a farm, each with its own 
set of input conditions. As 
such, models of any partic-
ular scale in Figure 2 may 
be represented by multi-
ple instances of models 
of smaller areas, thereby 
serving as building blocks 
in a hierarchical sense.

Figure 2. Scales at which 
agricultural system models 
are developed along 
with types of users and 
decisions and policies of 
interest.
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3.3.2 Farm and Broader Scales

An agricultural system could also be defined as a farm 
with land area on which different crops and livestock are 
produced, each of which is managed by a farm fami-
ly or business entity. In this case, the enterprises of a 
farm interact in various ways, which will be described 
later. At a broader spatial scale, one may define an agri-
cultural system as the land area in a region, district, 
or landscape that produces a particular commodity or 
various crops. The system model for that set of users 
predicts total production of the crop or crops in that area 
as affected by weather, soil, management and socio-
economic conditions, including a capability to evaluate 
decision and policy options. This landscape or regional 
model may also predict the amount of nutrient leaching 
or soil erosion for particular practices and policies being 
analyzed. Depending on the goals of the users, different 
approaches are used to develop the system model. But, 
typically at this scale, the models should include aspects 
of biophysical responses of crops and livestock as well 
as socioeconomic, environmental, policy, and business 
issues. These same characteristics of system models 
are important at national and global scales, in that 
biophysical, socioeconomic, and policy components 
are needed to model the important interactions and 
production, environmental, and economic responses to 
different decision and policy options. Recent years have 
seen increased interest in studying the interaction of 
agro-ecosystems with other managed and unmanaged 
ecosystems.  This has several motivations, including 
understanding the importance of ecosystems services 
such as pollination and biological pest control provid-
ed to agriculture by natural habitats as well as issues of 
managing biodiversity in landscape mosaics.

Figure 2 shows users that range from farmers to policy 
makers and businesses that are interested in improving 
decisions and policies ranging from field, landscape, 
regional, national, and global scales. The delineation 
of the land area over which decisions and policies are 
made vary considerably, depending on the stakehold-
er/user and his/her interests. At each scale, the land-
scape can be decomposed into areas delineated by 
agro-ecological boundaries (such as a watershed) or 
into areas delineated by socioeconomic boundaries, 
such as the political boundaries of a district or country. 
Models at each of these scales may be developed by 

using component models of smaller areas. For exam-
ple, a national model may make use of field scale crop 
models to simulate production across many districts 
then aggregated to the national scale for use in an 
economic model of the policy impacts on the aggre-
gate production or its variations across districts. An 
alternative to this approach would be to use an aggre-
gate national production model.

Agricultural system models at each of the scales in 
Figure 2 are imperfect predictors of real system perfor-
mance. To quote a famous statistician, “All models are 
wrong, but some are useful” (Box and Draper, 1987, 
p. 424). Model developers make assumptions about 
what components to include in the system, how these 
components interact, and how they respond to the 
environment and to management practices and poli-
cies. The models themselves and their performanc-
es also depend heavily on the data used to develop 
and evaluate them. In the next section, we present 
examples of several of the most widely used types of 
agricultural system models, focusing on their general 
capabilities and limitations relative to their applications 
and user needs. Then, we present five specific use 
cases, explain how existing models have addressed 
these types of uses, and describe limitations of existing 
system models for these cases.

4.  Levels of Detail, Comprehensiveness, 
and Complexity 

Here, we identify and summarize five types of agricultur-
al systems that are modeled as subsystems for a wide 
range of applications by users at different scales. For 
each type, we identify the responses that the models are 
generally expected to produce and the factors to which 
they respond. We also summarize the main approach-
es used in the models and the types of data needed to 
develop and use them. Example applications are cited 
and general limitations of current models described.

4.1  Cropping System and Grassland 
Models 

The basic characteristics of cropping and grassland 
systems are fundamentally the same in that they 
describe crop or grassland agro-ecosystem growth 
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and yield responses to climate, soil, species charac-
teristics, and management. However, there are several 
aspects of grassland/rangeland modeling that pres-
ent unique challenges relative to modeling cropping 
systems. Many of these challenges stem from the 
requirement that grassland models represent several 
interacting species, including perennial and woody 
species of grasses. Persistence of plants over multiple 
years forces the models to consider residual effects 
over time. Dependency on soil-derived nutrients or 
human-induced disturbances like fire reinforce the 
longer-term perspective needed for grassland model-
ing. Thus, although most biophysical processes are 
similar relative to photosynthesis, growth, water and 
nutrient uptake from soil, etc., additional consider-
ations for modeling grasslands are presented below.

4.1.1  Model-Simulated Responses of 
Interest to Users

The most common response variable modeled for 
cropping systems is yield, which may be grain, 
tuber or forage biomass yield. Although statistical 
models may be useful for predicting these biological 
yields in response to some combination of weather 
conditions, nutrient levels, irrigation amounts, etc. 
(e.g., Schlenker and Lobell 2010; Lobell et al. 2011), 
such models are only able to predict responses that 
have been measured under specific conditions in 
the past. In contrast, dynamic cropping and grass-
land system models may simulate these biologi-
cal yields in addition to other responses that may 
be important to analysts, such as crop water use, 
nitrogen uptake, nitrate leaching, soil erosion, soil 
carbon, greenhouse gas emissions, and residual 
soil nutrients. In addition, these dynamic models 
can be used to estimate responses in places and 
time periods in which there are no prior experi-
ments. They can be used to simulate experiments 

and estimate responses that allow users to evaluate 
economic and environmental tradeoffs among alter-
native systems. The simulation experiments are able 
to produce responses to the various climate and soil 
conditions, genetics, and management factors that 
are represented in the model. 

4.1.2.  Factors to Which Cropping and 
Grassland Systems Respond

 Many factors affect crop growth and yield in agricul-
tural fields. One innovation of the early pioneers in crop 
modeling was to categorize the crop production situa-
tion being modeled so that one could narrow down the 
many factors that need to be included in the crop model 
(Bouman et al. 1996; van Ittersum et al. 2003). Figure 
3 summarizes three overall crop production levels and 
shows the factors that influence each. The potential 
production level is defined as crop production that is 
determined completely by the defining factors of CO2, 
radiation, temperature, and crop characteristics (e.g., 
genetic control of physiology and phenology and the 
canopy architecture). This potential production level is 
rarely achieved in real production situations, but under 
highly intensive management (supply of adequate 
water and nutrients and control of insects, weeds, 
and diseases), production approximates the poten-
tial level for the specific CO2, temperature, radiation, 
genetics, and canopy architecture used). For example 

Figure 3. Diagram of production situation used 
to characterize factors included and excluded 

from cropping system models to help guide their 
development and inform users of their applicability 

to address different questions. Adapted from van 
Ittersum et al. (2003).
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crops grown in greenhouses or in intensively managed 
fields in some regions produce yields that are at or 
near the potential level. Models of cropping systems 
at the potential level incorporate crop phenology and 
growth processes, including partitioning of biomass 
growth into grain and other plant parts, with the defin-
ing factors modeled to affect these processes. 

The next production situation is referred to as water-lim-
ited and/or nutrient-limited production (Figure 3). At 
this level, the defining factors are still important, but 
also there may be limitations of water and/or nutrients 
needed to achieve the growth potential. Crop models 
that simulate water and/or nutrient-limitations must 
include soil water and nutrient component models that 
simulate the time-varying availability of water and nutri-
ents, the uptake of these resources, and reductions in 
growth and development if they are not adequate to 
meet demands. Most cropping and grassland system 
models contain component modules that simulate soil 
water, nitrogen, and carbon dynamics because of the 
critical importance of these resources in determining 
yield globally. Although some models also simulate 
soil phosphorus, most current cropping and grass-
land systems models have limited or no capabilities 
to simulate responses to phosphorus, potassium, and 
micro-nutrients. Models that include water, soil N and 
soil C dynamics are complicated not only because of 
the physical and chemical processes that occur in the 
soil, but also because of the complexities in managing 
these resources (including water-harvesting, drip irri-
gation, types of inorganic or organic fertilizer applied, 
micro-dosing, etc.).

Finally, the actual production level (Figure 3) includes 
additional factors that reduce growth and yield 
(insects, diseases, weeds, and pollutants). Whereas 
some crop models have the capabilities to introduce 
damage by diseases and insects (e.g., Boote et al. 
1983; Pinnschmidt et al. 1995), modeling these reduc-
ing factors has not kept up with advances in crop 
modeling. Most groups modeling cropping and grass-
land systems do not include these factors. Thus, most 
current models are not capable of simulating respons-
es to pest and disease damage or to management of 
these factors using resistant varieties, agro-chemi-
cals, or other approaches. This is a major limitation of 
current models for some applications.

4.1.3  Components of cropping system 
models – crop, soil, atmosphere, 
management

Generally, dynamic crop models include those factors 
at the potential yield level (Figure 3) in addition to 
water- and nitrogen-limited production level. However, 
the ways that different models include those factors 
vary. Figure 4 shows a schematic of the components 
in the Cropping System Model (CSM) that incorporate 
the CERES and CROPGRO models in DSSAT (adapted 
from Jones et al. 2003). This model has the capability 
to include soil water, nitrogen, carbon, and phospho-
rus dynamics as well as to introduce pest and disease 
damage into some of the crop models using the 
approach described by Boote et al. (1983). It also has 
the capability to simulate multiple seasons so that the 
carry-over changes in soil water, N, and P are simulat-
ed to represent longer-term changes in soil resources 
in response to different management systems (Porter 
et al. 2010; Basso et al. 2011)

A number of other cropping and grassland system 
models have similar components and capabilities (e.g., 
APSIM, CROPSYST, EPIC, and SALUS), although those 
models do not have components to simulate pest and 
disease limitations. Some models (in particular APSIM) 
have the ability to simulate intercropping of some crops 
(Thorburn et al. 2014). The current situation is that 
modules from one set of models are not compatible 
with other systems. For example, a major effort would 
be needed to incorporate the capabilities to simulate 
intercropping into the DSSAT CSM or to incorporate 
modules from the DSSAT CSM for causing pest and 
disease damage to crops in the APSIM system. 

4.1.4 Approaches

Most current cropping system models are modeled 
using a similar structure as shown in Figure 4. Most 
operate on a daily time-step such that photosynthe-
sis, biomass growth, phenological development, and 
partitioning of biomass into grain, leaves, stems, and 
roots are computed daily to update the state variables 
of the crop. In addition, soil-water processes includ-
ing rainfall, infiltration, runoff, percolation, redistribu-
tion, and plant uptake are computed, and changes 
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in soil nitrogen are calculated in order to simulate the 
time-changes in soil water, soil N, and crop biomass 
on a daily basis. However, the details of how differ-
ent growth, hydrology, and soil nutrient processes are 
represented vary among models. 

The choice of whether to use functional vs. mechanis-
tic approaches to model processes depends on the 
modeling team’s knowledge of the system, data that 
they have for parameterization, and their experience in 
developing and evaluating models. This is one of the 
main reasons that different models produce different 
responses when used to simulate the same experi-
ment (e.g., see Asseng et al. 2013; Bassu et al. 2014). 
Most models use simplified functional equations and 
logic to partition simulated biomass into various plant 
organs. The functional models also primarily use 
“capacity” concepts to describe the amount of water 
stored in a soil and available to plants as compared 

to using potential energy of soil water and “instanta-
neous rate” concepts from soil physics. The difference 
between the upper and lower limits of soil water-hold-
ing capacity determines the amount of water available 
to plants. In this type of soil water model, water move-
ment and its availability for crop growth are represent-
ed by functional equations on a daily time step, even 
though infiltration and runoff processes may occur 
much faster. 

 4.1.5  Additional considerations for 
modeling grasslands

Grass stands, whether in planted pastures or graz-
ing-lands with native species, are usually mixed stands 
comprised of a variety of grasses and forbs, includ-
ing legumes and sometimes woody species (Allen et 
al. 2011). Unlike croplands, the diversity of species 
generally precludes use of a single-species parame-

terization, since species vary 
in their ability to compete 
for space, water, nutrients 
(most commonly nitrogen), 
and light. Grassland models 
generally represent plant 
behavior and competition 
between herbaceous plants 
using (1) a set of species, 
each independently param-
eterized; (2) amalgamations 
of plants into parameters 
for plant functional types 
(e.g., warm-season grasses, 
legumes, etc.); or (3) commu-
nity-averaged parameteriza-
tions (Taubert et al. 2012). 
While requiring more effort for 
parameterization, these amal-
gamated approaches enable 
representation of changes in 
plant community composi-
tion over time in response to 
climate change, for example, 
as a function of competition 
among plant populations 
driven by plant establish-
ment, growth, growth form, 
senescence, and mortality. 

Figure 4. Land, soil, crop, climate, and management components in the 
DSSAT Cropping System Model (CSM, adapted from Jones et al. 2003).
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Trees, dynamic components in much of the world’s 
native grazing land area, can have significant impacts 
on ecosystem function (Schlesinger et al. 1990). 
Representing tree/grass competition is challenging 
because trees respond differently to a variety of driv-
ers (such as fire, grazing, and CO2 concentration), and 
depend on plant population characteristics (e.g., seed 
banks). Shifts in plant community composition can be 
self-reinforcing due to co-occurring population and 
biophysical changes (D’Odorico et al. 2012). Dynamic 
vegetation modeling approaches are used to represent 
competition between herbaceous and woody types for 
water, nitrogen, light, and space. Dynamic rangeland 
vegetation models and state-and-transition models 
identify a set of plant communities that tend to resist 
change due to disturbance, but describe drivers (e.g., 
fire, grazing, climate change) that can lead to a transition 
to another quasi-stable plant community (Stringham et 
al. 2003). Expansion of woody species and increases 
in woody cover are widespread phenomena that under 
many but not all environmental conditions lead to the 
transition of early successional communities dominat-
ed by grasses and forbs to forests (Van Auken 2000). 
Studying woody encroachment and understanding 
the importance of competing drivers has been chal-
lenging, in part because of the slow processes driv-
ing changes (e.g., Morgan et al. 2007). These slow 
changes are reflected in the drivers of transitions in 
state-and-transition models and contribute to uncer-
tainty in our ability to represent longer-term changes 
in the tree-grass balance. Ecological succession has 
been studied by plant ecologists since the pioneering 
work of Clements (1874-1945) and greater interaction 
between agricultural system and ecological modelers 
is likely to be mutually beneficial.

Grazing animals of all kinds have an impact on plant 
productivity by removing photosynthesizing tissues, 
altering light transmission through the canopy, and 
affecting plant allocation patterns and differentially 
influencing species mortality and recruitment rates in 
grasslands (Diaz et al. 2007). Such changes to groups 
of plants (species, functional groups, etc.) can drive 
changes in the competitive balance and thus plant 
community composition. Whereas grassland models 
incorporating species or plant functional types are 
capable of representing grazing-induced changes 
in the competitive balance, such models that repre-

sent plants with a set of community-wide parameters 
usually rely on some combination of LAI (Leaf Area 
Index)-driven reduction in production potential along 
with grazing response curves. In grasslands/range-
lands, grazing (or cutting for hay) removes some of 
the productive capacity of the plants, meaning that 
models cannot rely upon deterministic growth curves, 
but must have the capacity to forecast growth for 
plants with an amount of biomass or leaf area that 
varies independent of the time-of-year or climate. 
Furthermore, there can be significant differences in 
growth rates after a grazing event between and even 
within species (Milchunas and Lauenroth 1993; Vesk 
and Westoby 2001). 

4.2 Reduced form summary crop models

The types of crop models discussed above respond 
to soil, weather, genetics, and management inputs. 
As noted, the number of factors to which the models 
respond vary among models and evolve as model-
ers attempt to make them more comprehensive and 
universally applicable. In contrast, some researchers 
who want to apply crop models do not have all of the 
inputs needed or they may want to imbed the crop 
model in an economic or other model for analyzing 
responses across scales. There are good examples 
where researchers have used more comprehensive 
crop models to create reduced forms of models that 
have much fewer input requirements, run much faster, 
and produce the responses needed for specific appli-
cations. One good example is described by Chikowo 
et al. (2008) in which the APSIM cropping system 
model was used to generate parameters and variables 
needed to operate a much simpler field scale crop 
model (NUANCES-FIELD, Titonell et al. 2007). The 
reduced form summary model responds to nitrogen 
and phosphorus levels for different soil characteris-
tics and management inputs, which is what the farm 
scale model required. A similar approach was used by 
Dzotsi et al. (2013), demonstrating that reduced forms 
of maize, peanut, and cotton models parameterized 
using the DSSAT cropping system model accurate-
ly reproduced data and DSSAT simulations across a 
range of locations. This approach allows researchers 
to produce situation-specific summary models that 
approximate the responses of a more comprehen-
sive model for use in broader scale analyses that may 
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involve socioeconomic, livestock, and environmen-
tal sustainability components as well. Other advan-
tages of such reduced form models is their ability to 
be more easily understood by those not involved in 
agronomy, crop or other discipline-specific modeling, 
as well as more rapid run times and smaller memory 
requirements.

4.3 Livestock systems

Livestock systems are complex and require modeling 
at several levels: the animal, the herd, and its interac-
tion with its environment via consumption of feed, use 
of land and water, and other resources. Several types 
of models have been used in the past to describe the 
different components of livestock systems. The most 
commonly used are summarized in Table 2. 

Animal performance models: A central element driv-
ing production, profitability, and efficiency in livestock 
systems is animal performance. Hence models that 
predict animal productivity in terms of meat and milk 
are the most commonly used type of livestock model. 
Precursors to performance models have existed since 
the 1940’s when the first feed requirements for live-
stock were developed (NRC 1945). Since then, many 
have been built and refined regularly across the US 
and Europe (AFRC 1993, NRC 2001, SCA 2007). 
Nutrient requirements models are the workhorse of 
the feed industry for ration formulation (linked to linear 
programming models for least-cost ration formulation) 
and for recommending changes in feed management 
to farm advisors. They are often based on a mixture 
of statistical regressions derived from experimental 
data and mechanistic principles of the energetics and 
protein metabolism of mammals. 

Animal performance models usually require informa-
tion on the animal (i.e., bodyweight, target milk produc-
tion, milk composition, breed, days pregnant) and the 
feeds (digestibility and crude protein at the minimum, 
but increasingly several parameters related to the fiber, 
mineral and/or amino acid composition of feeds are 
also used). They also need an estimate of feed-intake, 
perhaps the most important parameter. While these 
models are good for calculating feed requirements, 
dynamic models of digestion are more accurate at 
predicting the nutrient supply to animals under a wide 

range of conditions (from the high-yielding dairy cow 
to the smallholder goat) (Tedeschi et al. 2014; Herrero 
et al. 2013; Illius and Allen 1994; Fox et al. 1992), 
because they predict intake more accurately, and also 
because they can deal with more complex diets and 
their interactions. Additionally some of these models 
predict methane production in ruminants and manure 
quantity and quality, which are important for estimat-
ing GHG emissions and the role of livestock in nutrient 
cycles. Typical questions solved with these models 
are ‘what if’ questions around the impacts of differ-
ent feeding practices (different feeds and/or different 
quantities) or changes of animal types (breeds, differ-
ent production potential) on animal performance (meat 
and/or milk output, GHG emissions, manure output). 

Herd dynamics models: The objective of herd dynamics 
models is to follow the evolution of the herd over time 
in terms of animal numbers and herd structure. Herd 
dynamics simulation usually starts by splitting a herd 
of animals into cohorts of different ages or weight, and 
sex. These cohorts are specified with different mortal-
ity, reproductive, selling and replacement rates. Adult 
females will produce offspring at specified reproduc-
tive rates, these grow or die, become part of the next 
cohort, and get sold, and the cycle continues. The 
better examples of these models include interactions 
between animal nutrition and reproduction to drive 
reproductive and mortality parameters stochastically 
(Konandreas and Anderson, 1982; Rufino et al., 2009). 
This is important as feed availability or supplementa-
tion strategies have significant impacts on herd repro-
duction and performance. Some applications of herd 
dynamics models include estimating optimal stocking 
rates and carrying capacities, assessing the impacts of 
reproductive technologies and/or reductions in mortal-
ity, and predicting removal of biomass from crop or 
pasture systems. These models are also widely used 
by livestock epidemiologists for estimating impacts of 
diseases on herd mortality and morbidity. They have 
also been used with dynamic programming for opti-
mizing replacement decisions in commercial dairy 
herds (van Arendonk and Dijkhuizen 1985), or in linear 
programming applications for studying optimal sales 
policies, herd sizes, etc. 

Integrated livestock systems models: These models 
represent whole livestock farms and their key compo-
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Type of model Simulation Outputs

Individual animal 
performance

- Prediction of performance

-  Assessing impacts of alternative feeding 
practices on yields, GHG emissions

-  Assessing sustainable intensification 
strategies

-  Impacts of changes in breeds or types of 
animals

- Yield gap studies

-  Assessment of manure quantity and 
quality

-  Establishment of substitution rates 
between feeds

- impacts of feed scarcity

- Least-cost diet formulation

- Optimization of supplementation 
practices

- Nutrient synchrony studies

- Amino acid adequacy for high yielding 
dairy cows

-  Optimal feed management for different 
types of animals in a herd 

Herd dynamics - Impacts of reproductive management

- Stocking rate decisions

-  Impacts of climate variability on herd 
dynamics

-  Epidemiological studies of disease spread 
and impacts on herd numbers, profitability

- Value chain studies 

- Optimal replacement

- Optimal times to sell animals

- Impacts of climate variability on herd 
dynamics

Integrated 
livestock systems

-  Assessment of the feasibility of new 
management strategies

- Land use management strategies

- Best grazing practices 

- Feed conservation strategies

-  Trade-offs in the use of resources 
technology targeting

-  Identification of key constraints (labour, 
etc)

- Gender sensitive strategies

- Selling and replacement strategies

- Optimal herd sizes

- Land-use management in livestock farms

- Intensification potentials

- Trade-offs in the use of resources

- Impacts of input and output prices

-  Impacts of intensification or 
environmental policies

- Optimal stocking rates and carrying 
capacities

- Selling and replacement strategies

-  Matching seasonal feed resources to 
herd dynamics

Table 2. Livestock models and some types of questions they can help answer
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nents (Figure 5). The complexity of some livestock 
systems justifies the need to build whole-system 
models using simulation and optimization techniques 
to represent different components and their interactions 
(Herrero et al. 1996). For example, grazing management 
strategies cannot be made without considering herd 
and nutritional management, since herd dynamics or 
feed supplementation practices will determine the graz-
ing intensity, use of forage, and subsequently animal 
performance. Thus, the simulations representing the 
biology of livestock enterprises includes flexible models 
representing pasture growth, structure and quality; 
individual animal performance to test nutritional strat-
egies; and population dynamics describing manage-
ment practices at herd or flock level (i.e., stocking rates; 
sales of animals; mortality or replacement rates; calving 
intervals; etc.), which subsequently determine animal 
numbers and their age or physiological state (lactating 
vs. pregnant cows, heifers, calves, etc.) classes (Freer 
et al. 1997; Loewer 1998; Johnson 2002).

In some instances, biological simulation systems are 
used as input-output coefficient generators for linear 
programming models to aid in the selection of manage-
ment strategies in livestock systems (Woodward 1998, 
Nicholson et al. 1994; Herrero et al. 1999).

4.4  Modeling pests and diseases of crops 
and livestock

Biologists have been building mathematical models 
to describe the population dynamics of agricultural 
weeds, pests and diseases for over a hundred years. 
The diversity of modeling approaches that consti-
tute the current state of science can be categorized 
in different ways. The first and most obvious is by 
production type and threat. Thus there are models 
that describe the dynamics of weeds, diseases and 
pests that are threats to arable crops, the diseases of 
livestock, and the diseases of fish used in aquacul-
ture. While threats such as pests and diseases have 
been recognized since pre-history, the complexities 
of the microbial communities on the crop surface and 
in the soil around plants, and in the gut and rumen, 
are only just becoming fully understood. Models of 
the mixture of beneficial, commensal (those that 
neither benefit nor harm their hosts) and pathogenic 
organisms these communities contain have not yet 
been developed.

A broad distinction can be made between mechanis-
tic (or process-based) and non-process-based pest 
and disease models. The former include explicit biol-
ogy while the latter use a purely statistical approach. 

Figure 5. Integrated 
livestock modeling 

framework (adapted from 
Herrero et al 1996).
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For example, a farm manager may want to know 
when to apply a prophylactic insecticide against a 
common insect pest. A statistical model containing 
biological variables such as crop stage, and weath-
er variables such as temperature and rainfall, may 
best predict future insect population density. Future 
insect population density may be best predicted by 
a statistical model containing independent biolog-
ical variables such as crop stage, and dependent 
weather variables such as temperature and rainfall. 
In some cases, information about the pest itself may 
be included in the model, for example from phero-
mone or other traps monitored by the farmer or in the 
case of mobile insects from publicly-operated moni-
toring networks. A different statistical application is 
the use of climate-matching models to predict future 
pest problems. The current distribution of an organ-
ism is modeled using a set of predictors including 
climate. The distribution of the organism after climate 
change is then estimated by mapping the “climate 
envelope” using scenarios developed from global 
climate models. There is now broad literature on the 
strengths and weaknesses of this approach, particu-
larly challenging the assumption that organisms are 
able to move easily to track climate. Important recent 
advances in statistical models of pest dynamics have 
included the application of modern spline and neural 
net estimation techniques, and in the use of personal 
computers and increasingly mobile devices.

Mechanistic models incorporate at least some infor-
mation about the biology of the crop and pest species 
concerned. The models may be highly abstract 
summarizing, for example, a pest population by a 
single state variable such as density, or highly complex 
with individual pests (or crop plants, or farm animals) 
each represented by numerous attributes. The 
simplest models sacrifice realism to give mathemat-
ical tractability and general insights, while models of 
intermediate complexity include more biological detail 
but are constructed in such a way that simpler analyti-
cal models can be recovered as limiting cases in order 
to help interpretation. Pest and disease models also 
vary in the degree to which they explicitly incorporate 
stochastic processes (often critical in epidemiologi-
cal models) and in whether they treat a population as 
homogeneous or spatially variable. 

4.4.1 Near-future pest and disease threats

Mechanistic models can be used to predict near-future 
pest and disease threats in ways that are similar to the 
statistical models discussed above. As was discussed 
with crop models, they may be more successful than 
statistical models if biological insights can substi-
tute for missing data or if they can aid prediction by 
suggesting a model structure that simple statistical 
fitting would miss. Consider, e.g., the response of an 
insect to daily temperature. Higher temperatures may 
elevate growth leading to more pests, a pattern that 
could be derived with sufficient weather and popula-
tion data. Alternatively, the physiological response of 
the insect could be modeled, which might improve 
the model’s predictive power or allow insect dynamics 
to be predicted in data-poor systems (or under future 
climate). Several schools of physiological modeling 
exist and have produced parameterized models of 
insect pests, but we are aware of no formal compari-
son of different process and statistical approaches to 
the same problem. 

An area where biological insights have proven partic-
ular fruitful has been in disease spread through 
commercial livestock populations. An understand-
ing of how animals interact, but more importantly 
how animals are moved around, can provide critical 
advice to policy-makers. Current state-of-the-art 
livestock models incorporate data on the movements 
of animals between individual farms coupled with 
modern Bayesian parameter estimation. However, 
the type of data needed for such approaches is 
prohibitively expensive to obtain or politically unac-
ceptable for many countries to collect (Brooks-
Pollock et al. 2014).

Modeling has also proved valuable in assessing possi-
ble pest risks and in guiding general policy develop-
ment. The basic epidemiological number (R0) is the 
number of secondary cases of a disease that are 
expected to happen when a primary case occurs in 
a susceptible population. Calculation of R0 for preva-
lent human diseases has proved useful in prioritizing 
investment in control strategies and vaccine devel-
opment. Today, sophisticated mathematical tools are 
available for calculating R0 for complex structured 
populations, for spatially extended populations, and 
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in the presence of stochastic effects (Diekman and 
Heesterbeck 2012).

The discussion so far has explored only weed, pest and 
disease models where the state variables are popu-
lation densities. Models have also been construct-
ed to explore evolutionary and economic processes. 
Evolutionary models can be broadly categorized as 
genetic or phenotypic, the former explicitly simulates 
genetic processes while the later only simulates trait 
dynamics. Phenotypic models have been explored 
to a certain extent in agriculture (for example, under 
the rubric of Darwinian agriculture (Denisen 2012) 
but the vast majority of models have been genetic. 
Probably the most sophisticated areas of population 
genetics applied to weed, pest and disease issues in 
agriculture are models of the evolution of resistance 
to pesticides, and of the dynamics of plant diseases. 
Based on theoretical analyses, areas of fields have 
been set aside unsprayed or not planted with modi-
fied crops that express an insecticide in order to slow 
the rate of spread of resistance (Bates et al. 2005). 
The genetic basis of plant-pathogen interactions have 
been resolved for a number of major systems, which 
has allowed detailed analysis of strain dynamics and 
how disease spread may be slowed by judicious use 
of a range of different crop varieties. State-of-the-
art in genetic models of weeds, pests and diseases 
includes utilizing the avalanche of data that modern 
high-throughput DNA measurement technologies are 
providing, and models of how novel genetic interven-
tions may be used to suppress pest populations. Some 
of the most sophisticated pest monitoring software 
(typically based on statistical rather than on process 
models) now includes specific economic variables 
with parameters such as commodity prices that can 
be updated dynamically. The farmer may make differ-
ent decisions about pest management depending on 
current market conditions. 

More generally, a goal of many people working to 
increase the sustainability of agriculture is to reduce 
chemical inputs by practicing “integrated pest (or 
disease) management”. Such models are challenging 
to construct but some of the most advanced incorpo-
rate economic elements as well as various biological 
processes.

4.5 Economic Models

A number of approaches have been developed to 
model the economic implications of decisions and 
policies for a range of scales and purposes.  Here, 
we summarize the most important approaches that 
have been used, most of which are still in use today, 
and indicate the purposes for which they are typically 
used. Also, important limitations of each approach are 
presented.

Farm management linear programming models. Linear 
economic optimization models of farm systems, devel-
oped in the 1950-60s, provide a basis for prescriptive 
farm management advice (see Heady and Dillon 1964). 
These models are characterized by a complex set of 
linear inequality constraints that represent the produc-
tion possibilities available to a farmer. The simplex 
optimization algorithm is used to select the optimum 
production possibilities. One disadvantage of this 
approach is that the solutions are restricted to extreme 
points in the multidimensional decision variable space 
and thus it is unable to explore intermediate solu-
tions. A major problem with these linear programming 
models is that they need complex constraint struc-
tures to achieve some degree of calibration to base 
data, but those constraint structures restrict alterna-
tive solutions. 

Econometric production models. Econometric 
methods have been developed and used for 
single crop production function models as well as 
single-equation and simultaneous system models 
that represent input demand and output supply 
behavior. Early work focused on primal represen-
tations (Mundlak 1961), but much effort shifted to 
dual representations in the 1970s and later (Lau and 
Yotopolous 1971). Both static and dynamic models 
have been developed. Single crop production func-
tions are estimated directly from data on the phys-
ical quantities of inputs and outputs observed from 
experimental plots, or, in later stages, from compre-
hensive farm production surveys. E.O Heady (1957) 
was an early proponent and researcher in this area. 
In many cases the functional form for the produc-
tion functions is a quadratic or Cobb Douglas spec-
ification, both of which have implicit restrictive 
assumptions on the production technology. Later 
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work emphasized various more flexible technology 
representations (Carter 1984). 

Econometric estimation of agricultural systems was 
expanded to represent both multi-crop production 
with its associated interdependencies, the endoge-
nous nature of agricultural supply response, and the 
imputed value of some key agricultural inputs that are 
often incompletely priced. A landmark article in this 
literature is the paper by Just et al. (1983). They noted 
that multi-crop farm businesses responded to chang-
es in prices or technology by adjusting both the inten-
sity of input use per acre, termed the intensive margin 
(i.e., fertilizer amount per land area); and also the allo-
cation of land to crops termed the extensive margin. 
This distinction is important for modeling optimal 
input allocation in multi-crop farming systems. The 
importance of the interaction of multi-crops in a farm 
unit was a significant step forward in realistic econom-
ic models of farming systems. However, formal link-
age to biophysical models of agricultural processes 
was not included in the approach. The econometric 
approach has limitations in its ability to extrapolate 
responses that are outside the estimation sample, 
or those that employ systems that are not present in 
the data sample. These limitations were emphasized 
by Antle and Capalbo (2001) in their development of 
economic simulation models that combine econo-
metric and other disciplinary simulation models into 
an integrated assessment framework. 

Risk behavior models. The importance of risk on farm 
decisions was recognized early in the development of 
linear optimization models of farming systems. Early 
articles on this linear approach to risk analysis are 
by Lin et al. (1974) and Hazell and Scandizzo (1975). 
As improved algorithms to solve quadratic optimiza-
tion problems were developed, specification of risk 
in optimization models of farm systems expanded 
to a mean-variance measure of risk and imputed a 
risk-aversion value based on observed farmer actions 
or primary surveys. The book by Hazell and Norton 
(1986) shows the initial development of this approach. 
Just and Pope (1978) introduced a widely-used econo-
metric risk model. Antle (1983) introduced a general 
moment-based representation of output distributions 
that has been widely used to study production risk 
behavior, including downside risk. Recent research 

has extended this approach to investigate impacts of 
climate change (Tack et al. 2012). 

Spatial equilibrium models. The importance of space 
in agricultural production and modeling agricultur-
al systems was first introduced in terms of trade 
between regions of different comparative advantage. 
Takayama and Judge (1964) showed that spatial equi-
librium conditions and transport cost between differ-
ent production locations could be characterized as a 
quadratic optimization problem. Spatial econometrics 
advanced to include rates of development and special-
ization of production (Anselin 1988). Only recently has 
the availability of remotely sensed measures of agri-
cultural land and water use led to the use of spatial 
econometrics methods to address spatially varying 
farm production. (Anselin et al. 2004 and Staal et al.  
2002). Techniques are emerging that use both remote-
ly sensed data and spatial econometrics to draw 
conclusions about resource use or the effect of spatial 
variation on agricultural supply response. 

Structural simulation models. Complex simulation 
models have been used for the past 45 years to 
describe dynamic agricultural systems. Early exam-
ples were often based on Forrester’s (1968) concept 
of system dynamics that uses storage and flow vari-
ables to describe the system. However the underlying 
philosophy that a comprehensive and complex feed-
back system is, in of itself, stable and reproducible 
has never been convincingly demonstrated. Structural 
simulation models can be very useful for representing 
a combination of consistent behavioral relationships 
(i.e., that the quantities of product supplied by farmers 
is able to be sold at a price that recovers the costs 
of the inputs used to produce) based on theory and 
empirical measurement. They are however, subject 
to interpretation by the researcher in the absence 
of robustly estimated relationships describing the 
dynamic behavior of the system. 

More recently, agent-based modeling (Billari et al. 
2006, Troost and Berger 2014) has been widely used 
as a way of modeling interactive human behavior and 
natural systems. Some agent-based models have a 
more formal dynamic and calibration structure and 
use mixed-integer optimization approaches for solu-
tions. However, the generality of the approach makes 
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it susceptible to the same difficulties of empirical veri-
fication and reproducibility that earlier complex struc-
tural simulation models had.

Calibrating optimization models. Along with more 
complex constrained models, researchers have 
developed optimization models that utilize the shad-
ow values on resource and calibration constraints 
to derive nonlinear calibrating functions, which are 
termed positive mathematical programming (PMP) 
(Howitt, 1995). In the past 10 years PMP has devel-
oped from formal calibration methods that reproduce 
the observed cropping pattern, termed first-order 
calibration, to approaches that calibrate crop supplies 
to prior estimates of supply elasticities (second-order 
calibration), and more complex production functions 
that calibrate against elasticities of substitution and 
returns to scale. In addition, PMP models are now 
being formally linked with biophysical models. A 
comprehensive survey of the more recent develop-
ments in optimization of economic models is present-
ed in Merel and Howitt (2014).

Computable general equilibrium models. These 
macroeconomic models (e.g., computable gener-
al equilibrium, or CGE models) spawned a series of 
smaller-scale models which are usually called village 
or household models. General equilibrium village 
models account for all the flows in the village econ-
omy and remittances within the village to different 
workers and landowners. In addition, they include the 
flows of revenue in and out of the village boundary. 
This is particularly useful in developing country farm 
economies where much of the labor is supplied by 
family members with little or no pay. Another advan-
tage of village-level equilibrium models is that they 
account for the utility gained from subsistence food 
grown in the village. These equilibrium models are 
anchored by a social accounting matrix that accounts 
for flows within and outside the economy. Moreover, 
it is common practice to fit the standard function-
al form such as a constant elasticity of substitution 
production, supply, or transformation function that is 
calibrated against exogenously estimated elasticities 
(see Taylor and Adelman 2006). CGE models have 
the disadvantage of being data and computational-
ly intensive due to their more general specification. 
Compared with the more detailed partial equilibrium 

models above, general equilibrium models are hard-
er to interact with process models, as they are less 
detailed in their production specification.

Dynamic optimization models. Some forms of agricul-
tural production are anchored by a stock of resourc-
es that may be renewable or depletable, and whose 
dynamic relationships determine production over time. 
In this case, farm system models relying on this type 
of resource have to be analyzed in a formal dynam-
ic economic context. The stocks of resources are the 
state variables for the problem, and the dynamic equa-
tions for the state variables are the biophysical equa-
tions that determine the changes in state variables 
over time. Solution approaches to dynamic economic 
problems are often categorized either into dynamic 
programming problems or optimal control problems. 
Solutions to problems formulated in this way are 
based on developments principle of optimality and the 
recursive Bellman (1957) equation. Dynamic program-
ming, as are all formal dynamic methods, is plagued 
by what Bellman termed the curse of dimensionality, 
which restricts the number of state variables and thus 
the realism of the dynamic models. This problem of 
dimensionality is somewhat relaxed by using an itera-
tive approach to solve for the optimal long-run equilib-
rium solution. Publications on these methods can be 
found in Judd (1998) or Miranda and Fackler (2002). 

The optimal control specification of dynamic econom-
ic problems is a broader definition than dynamic 
programming and is most often associated with analyt-
ical solutions to relatively small theoretical problems 
where the optimal policy can be found by analytical 
solution of the differential equations that characterize 
the dynamic economic and biophysical processes. 
While these optimal control solutions are widely found 
throughout the resource economics literature, they 
are rarely applied to farm system models due to the 
problems of functional complexity and dimensionali-
ty that tend to dictate a numerical solution. Solution 
approaches to optimal control problems in the 1970s 
were often variants around the familiar linear quadratic 
Gaussian specification.

Agricultural system models. Flichman (2012) contains a 
number of recent studies on the application of models 
that combine bio-physical and economic models to 
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represent agricultural systems. Flichman and Allen 
(2012) and van Wijk (2014) have also published surveys 
of economic agricultural system models. They char-
acterize the scale of bio-economic models into farm 
models, landscape models, regional, and national 
models. Systems in each of these scales have compo-
nents that include crops, livestock, and socioeconom-
ics that interact with one another in complex ways. For 
example, the diagram of a farming system shown in 
Figure 6 shows important components that need to 
be included in models at that scale. It shows the crop 
and livestock production enterprises of a farm, the 
household decision and production processes, and 
the interactions among the household and production 
systems of the farm. 

Within these scale levels they address both static and 
dynamic specifications. In his introduction Flichman 
attributes the growth of bio-economic modeling to 
two developments: The first development being the 
improvement of biophysical agricultural simulation 
models, and the second being the evolution of agri-

cultural policies that demand integrated assessments 
that conventional economic models do not provide. 
We will briefly address three areas of application of 
integrated bio-economic models that are prominent in 
the literature.

i)    Climate Change Impact Assessment Models. 
Economic modeling approaches to the impact of 
climate change on agricultural systems have been 
addressed in two very different ways. The first 
method links optimization models of agricultur-
al production to climate models using agronomic 
models which map climate change variables into 
crop yields effects. The best-known example of this 
type modeling on a national basis for the United 
States is by Adams et al (1990) and the results 
from this type of model were widely used in the 
1990 IPCC report. Since then, this same approach 
has been used in different types of optimization 
models over smaller geographic areas and driv-
en by downscaled climate data. One advantage 
of using formal economic models to estimate the 

Figure 6. 
Diagram of a 
farming system 
showing the 
household and 
production 
system 
components 
and interactions 
that need to 
be included in 
models.
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impacts of climate change is that they are able 
to incorporate the effects of both adaptation and 
mitigation that results from economically optimal 
adjustments to agricultural production under both 
changed growing conditions and a carbon tax.  
 
An alternative econometric approach to measuring 
the impact of climate change on agricultural crop 
yields as well as economic variables such as land 
values and economic returns is to estimate statis-
tical models based on observed behavior. These 
statistical models are then simulated with data 
from future climate projections. A justification for 
this approach is that it embeds realistic adaptive 
behavior into the model (Mendelsohn et al.1994). 
However, this type of model also has significant 
weaknesses, for example, it does not incorporate 
the effects of CO2 fertilization on crop productivity, 
and cannot be used to identify the type of adap-
tive behavior or technological adaptations. Various 
researchers have used econometric methods to 
model the effects of climate on yields and other 
variables (Schlenker et al. 2013). 

ii)    Hydro-Agricultural Economic System Models. 
There is a long history of applying hydro-econom-
ics of agricultural systems, since irrigated agricul-
ture is the largest user of water in many parts of 
the world. The tradition of integrating hydrology 
models with economic models stretches back 35 
years since it was recognized early that the motiva-
tion for water use is strictly economic in agriculture, 
but that the equations associated with water use 
had to be modeled by physical hydrologic models. 
Accordingly, hydro-economic models were devel-
oped as coupled individual modeling systems. 
Two approaches are used. In the first approach the 
economic models provide benefit-response func-
tions, which are then embedded in a hydrologic 
policy model. This approach is found in the Calvin 
water allocation model (e.g., Jenkins et al. 2004). 
An alternative hydro-economic modeling approach 
is to characterize the response in the hydrolog-
ic models by statistically fitting a more simplified 
function to results from complex simulations over a 
range of hydrologic and climatological parameters. 
These response functions can then be included in 
an economic policy model. This approach has often 

been used to analyze the optimal management of 
common property resources used in agriculture, 
such as groundwater (see Knapp et al., 1996 for 
an example). A review of concepts and applica-
tions of hydro-economic models from an economic 
perspective can be found in Booker et al. (2012), 
while Harou et al. (2009) published a similar survey 
from a hydrologic perspective.

iii)    Integrated Economic Livestock Models. These models 
usually fall into one of two combinations; namely 
biological process models with an economic compo-
nent, or an economic model with livestock equations 
and response functions. Several models in develop-
ing countries expand their specification to take into 
account household linkages and village-level inter-
actions where there is some degree of subsistence 
consumption of livestock products, most commonly 
milk. A recent publication provides a good overview 
of integrated livestock modeling and its effects in 
mitigating climate change (Havlik et al. 2014). Their 
analysis is driven by a large-scale economic optimi-
zation model that assesses crop bioenergy produc-
tion, land-use changes, water requirements, and 
greenhouse gas emissions. Their results show that 
improvements in the livestock production system can 
significantly reduce impacts on fragile land use, as 
well as improve the effectiveness of climate mitiga-
tion policies. In another approach, Kobayashi (2007) 
analyzed stocking density impacts on Kazakhstan’s 
extensive rangelands by estimating a stochastic 
dynamic programming model for multiple livestock 
systems with stochastic forage production. This 
model showed that cost of capital strongly affects 
flock size and productivity.

4.6  Landscape/Watershed; Water and 
Environmental Quality

There are at least two different perspectives about 
modeling across space, including the interconnect-
edness of agricultural and ecological systems across 
the landscape. The first perspective is that human 
systems, including the farm, communities, and admin-
istrative and political areas in which agricultural 
systems interact through decisions and policies, affect 
production systems, markets, and trade. The other 
perspective is that the interconnectedness among 
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hydrological and biophysical processes establishes 
the underlying behavior of agricultural systems over 
the landscape, with a particular emphasis on under-
standing physical, chemical, and biological process-
es that occur in watersheds. Both are important, yet 
agricultural models rarely consider both in the same 
assessments.

Figure 7 shows the regional integrated assessment 
approach developed by AgMIP that emphasizes link-
ages of agricultural systems across space (A. farm 

Figure 7. The AgMIP 
Regional Integrated 
Assessment framework 
emphasizing linkages 
across scales 
and analysis of 
distributional impacts 
in heterogeneous 
populations of farm 
households (Antle et al. 
2015, this volume).

finer spatial resolutions to a larger area. If the 
areas of interest are defined by hydrologists, they 
tend to be watersheds. In contrast, if the areas 
are defined by economists, they tend to be admin-
istrative and political units (e.g., urban areas, 
districts, countries). These two perspectives are 
not mutually exclusive, however. In fact, they lend 
themselves to include both human and biophys-
ical/hydrological processes. The challenge for 
next generation agricultural models includes the 
technical aspects of integrated modeling and a 

household; B. heterogeneous farms in one or more 
communities across the landscape; C. heterogene-
ity of administrative districts; and D. national/global 
scale). In this perspective, based in part on the impact 
assessment approach developed by Antle (2011), the 
focus is on the economic, environmental, and social 
impacts of alternative systems within heterogeneous 
household populations. However, this framework also 
illustrates the feedbacks from farms to agro-ecological 
regions to national and global scales.

We often use the term “scaling up” of model results 
to refer to the aggregation of model results from 

transdisciplinary approach in which scientists 
recognize the need for collaboration, not only on 
specific projects, but also in designing models 
and decision support tools to achieve their goals.

Many current agricultural system models have been 
developed to evaluate practices and policies associ-
ated with environmental quality. Biophysical models 
(e.g., crop or nutrient models) typically operate at 
the point/field scales (Figure 8a) with an emphasis 
on vertical fluxes of energy, water, C, N and nutrients 
throughout the atmosphere, plant, and soil root-zone 
continuum.  Upscaling from point to the landscape 
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scale (Figure 8b) requires estimation of surface and 
subsurface fluxes and ecological transitions along the 
lateral scale. Coupling with landscape microclimate 
models provides not only the vertical inputs used 
by agricultural models, but also gradients (precipita-
tion, temperature, wind, vapor pressure deficit) along 
the landscape. Coupling with hydrological models 
provides water flow paths such as surface runoff, 
vertical and lateral groundwater flow, and interactions 
between shallow soil and groundwater zones and with 
adjacent surface water bodies (channels, rivers, lakes 
and coastal waters). Water quality models provide 
sediment and solute transport along the landscape 
controlled by water flows (Figure 8b), and other effects 
such as wind erosion. 

Integration and upscaling of landscapes into the 
watershed scale (Figure 8c) requires 3-dimensional 
coupling of the surface and subsurface water, ener-
gy and mass transfers (see more details on coupled 
versus integrated models in Condon and Maxwell, 
2013, and in Maxwell et al. 2014). At this scale, the 
groundwater aquifer system typically transcends the 

boundaries of the watershed and necessitates analy-
sis at a regional scale to evaluate not only the impacts 
of cropping and animal production systems on water 
quantity and quality, but also feedbacks from the 
hydrological system into the agricultural system (shal-
low water table effects, drought or low water availabil-
ity for irrigation) (Muñoz-Carpena et al. 2006). Further, 
meso-scale rainfall and evapotranspiration distribu-
tion models control the local surface and subsurface 
flow intensities, pollution and abatement (Shrivastava 
2014). At this scale, human effects through land use 
changes, as well as ecological (vegetation, wildlife) 
dynamics and transitions on natural or protected 
lands (riparian zones, conservation areas, etc.) are 
also important components needed to evaluate the 
overall sustainability of agricultural systems (Matson 
et al. 1997). Although some efforts have gone into inte-
grating biophysical models (e.g., crop, hydrology, live-
stock, ecological, and economic), more is needed to 
enable more comprehensive assessments of agricul-
tural systems across scales and adequately address 
environmental and economic responses to decisions 
and policies.

Figure 8. Lateral connections 
across scales with other 
environmental components 
needed in the next generation 
agro-ecosystems models, from 
(a) pointscales typical of current 
agricultural system models, 
(b) lateral hillslope/landscape 
surface and subsurface transfers 
of energy/water/C,N/nutrients 
and ecological and human 
interactions (adapted from Kirby 
1978), to (c) watershed and 
regional surface and subsurface 
connections and teleconnections.
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4.6  Aggregate agricultural system models 
(district, country)

In the last section, we discussed efforts where 
models developed separately are sometimes linked or 
combined to scale up from points or fields to water-
sheds and larger scales. Generally, there are many 
agricultural system models that address decisions and 
policies at scales where there may be many individual 
production systems, each with its own crop and live-
stock enterprises. Resolving the time and space scale 
differences among components of system models is 
a major issue brought about by independent devel-
opment of component models for different purposes. 
This is a general problem that one encounters when 
attempting to create a model that combines crop and 
hydrology models crop and economic models or crop 
and climate models (Osborne et al. 2007; Elliott et al. 
2014). There have also been efforts in which dynamic 
models have been developed to provide forecasts over 
aggregated areas (e.g., to provide aggregate crop fore-
casts) starting in the early 2000s. Traditionally, climate 
model output for a grid cell is downscaled to produce 
weather data time series for points that are then fed into 
crop models. However, the land surface also influenc-
es climate; processes within the atmosphere, oceans 
and on the land are coupled and dynamically interact 
over space on timescales from fractions of seconds to 
thousands of years. Crops are a major component of 
the land surface of the globe, occupying about a quar-
ter of the land area. Regional climate can be sensi-
tive to large-scale changes in cropped areas that can 
result from changes in economic or climate conditions 
(Osborne et al 2004). Therefore, another direction for 
agricultural impacts assessments at a large-scale is to 
dynamically couple the crop simulation with models of 
land and atmosphere processes.

Five research groups succeeded in coupling aggre-
gate crop into climate models (Bondeau et al 2007; 
Gervois et al 2004; Kucharik 2003; Osborne et al 2007 
and Stehfest et al 2007). One of these has shown that 
in some parts of the world the impact of changes in 
cropped area on regional surface temperature can be 
of the same magnitude as regional human-induced 
climate change (Osborne et al 2009). This raises the 
question of whether or not new fully-coupled climate 

change impacts studies will completely revise our 
previous estimates of food security impacts. It is clear 
that the full coupling of crop simulation within glob-
al climate models is opening up new possibilities for 
studies of the impact of climate change on agricultur-
al production that capture some of the complex and 
important feedbacks within the Earth system at a large 
scale.

Restriction of the skill of large-area modeling of crop 
production and yield is dominated by the density of 
data used in the simulation. More data should equate 
to better skill. However, the skill of large-scale modeling 
is determined by the smallest data set, whether this is 
the grid cell with the shortest run of observed yields, or 
the data grid with the largest resolution (climate, crop, 
soils or otherwise). We have seen recent increases in 
the resolution of climate input data and global grids of 
crop management and soil information. In this field of 
agricultural modeling, any future increase in data reso-
lution across the range of data needed for modeling 
should produce a more skillful model simulation.

5.  Current Agricultural System Models in 
Context of Selected Use Cases

Here, we discuss the state of current agricultural 
system science relative to its use in providing informa-
tion to assist a wide range of decision makers repre-
sented by five Use Cases, which were described in an 
earlier paper in this series. The paper by Antle et al. 
(introduction paper in this series) indicated that these 
Use Cases need crop, livestock, and farming system 
models. The question that we address here is whether 
current agricultural system models, existing sources of 
data, and existing decision support tools are adequate 
for providing information needed for these Use Cases. 
Here we summarize current capabilities and limitations 
of existing models and DSSs relative to those needs.

5.1 Farm Extension in Africa

In this Use Case, the user is Jan, an extension officer 
who is providing advice to a small farmer in Southern 
Africa to help her and her family produce more food 
and income on a consistent basis.
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Capabilities and Limitations 

Models. Can existing crop, livestock, and farming 
system models, data, and ICT tools provide the infor-
mation that Jan needs to advise the small farmer? 
The short answer is “No”, but there are models that 
partially meet these needs. There are no Apps that 
currently summarize output results from models that 
are appropriate for this particular farmer or to connect 
with models in the “cloud” to make runs as requested 
by an App that Jan activates. However, cropping and 
farming system models can analyze some of these 
changes that Jan needs to evaluate for the farmer. 
Current models can simulate responses of crops to 
water and N fertilizer input, but most crop models do 
not include pest and disease components. Also, simu-
lation of new or future varieties with drought and high 
temperature tolerance are being conducted for a few 
crops (Singh et al. 2012, 2013, 2014), although data 
for testing simulations are still lacking in most cases. 
And, although models can simulate crop growth and 
yield under various soil and management conditions, 
very little has been done to simulate the effects of 
rainfall harvesting on productivity, even though field 
experiments have shown considerable increases in 
some situations (e.g., Fatondji et al. 2010).

One of the most serious limitations of existing crop-
ping system models is their inabilities to include losses 
associated with the huge range of pest, disease, and 
weed species that damage crops. In many intensive 
production systems, weeds, pests, and diseases are 
controlled so that responses in those areas can be 
represented by the costs of control and the produc-
tion responses to climate, water, and nutrient manage-
ment. Typically, cropping system models simulate 
yields that are higher than actual yields in farmers’ 
fields, and much of this is due to damage caused by 
weeds, pests and diseases. As indicated, most crop 
models can operate at the water-limited and nitro-
gen-limited production situation (Figure 3), but do not 
simulate actual yield in production situations where 
these factors are not controlled. In addition, farmer’s 
fields sometimes are not homogeneous; for example, 
spacing between plants may vary considerably, even 
though the models assume homogeneity. However, 
if pest and disease data are observed and available, 
these can be input to some existing crop models to 

compute yield loss associated with specific pests and 
to diagnose the reasons for the gap between poten-
tial and actual yield (including the gap associated with 
water and some nutrients, especially N and P; e.g., 
Boote et al. 1983; Naab et al. 2004).

Generally, farming system models currently in use have 
capabilities needed to analyze this use-case. However, 
most of the farming system models are not developed 
to be easily implemented in farms where they were 
not developed. (An exception to this is the TOA-MD 
farming system model that is set up for a population 
of farms in contrast to a particular farm). And most do 
not consider risks associated with weather variabili-
ty and extremes, the variations in management that 
exist within and across farms, or all of the interactions 
among enterprises.

Input Data. Data are needed to describe a range of 
farming systems so that Mark could select the combi-
nation of biophysical, farming system, and household 
characteristics from data that have been collect-
ed and made available. This would include informa-
tion to allow Mark to tailor the inputs to most closely 
match the conditions of specific farms, which would 
also need to be made available to him as he makes 
use of the NextGen models and DSS tools. This 
includes climate, soil, management practice, labor 
and other inputs available for production and market-
ing of outputs, typical pest and disease pressures, 
availability and prices for farming inputs, and other 
farm, economic, and environmental information. This 
could also benefit from use of reduced form summary 
models to facilitate quick access to information need-
ed for specific questions in target farming communi-
ties. Generally, sufficient data on the biophysical, envi-
ronmental, and socio-economic conditions of each 
farm or for a range of farm typologies in the regions 
are not available. Although some data, such as climate 
and soil data, are available from databases that are 
georeferenced to provide some of the minimum data 
needed, these are generally not organized such that 
agricultural systems models can readily access them 
for analysis of specific farms. In other cases, such 
as information on the weed, pest and disease pres-
sures and on crop varieties’ and livestock breeds’ 
tolerance levels, is not available. Although there has 
been research that shows that some analyses need-
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ed to advise the farmer can be done, the availability 
of accurate input data for agricultural systems models 
is a major limitation at the current time. Furthermore, 
there are studies that collect much of the data needed 
for analyses of some of the issues that the smallholder 
farmer needs, including the integrated assessments of 
climate change impacts and adaptation in AgMIP and 
other projects. 

Decision Support Tools. Most existing DSS tools that 
are available in Apps are focused on relatively narrow 
issues, such as when to apply a fungicide to a particu-
lar crop (e.g., see www.agroclimate.org), when to apply 
the next irrigation, or how much N fertilizer to apply to 
a particular crop that will be grown on a particular type 
of soil in a specific setting. The authors are not aware 
of DSS tools that make use of more integrated models 
that help farmers decide on overall farming system 
design. Here, we envision a DSS platform that will 
connect various models, databases, analysis tools, 
and information synthesis tools to provide an easy-
to-use interface for Mark to set up the analyses and 
to select outputs that provide information to answer 
questions he has concerning the management of his 
farming system that considers specifics of that partic-
ular farms’ biophysical and socioeconomic situation. 
In addition, some information would include an esti-
mate of the confidence DSS developers have in any 
recommendation given to users. Such DSS platforms 
are possible, but not yet constructed.

Additional development in the models, databases, and 
DSS tools are needed to realize this potential, for crop-
ping system and farming system models. In particular, 
the Apps and associated databases needed for Mark 
to make use of the models and farm information are 
mostly missing currently. It is not practical for Mark to 
collect the information on a particular farm, go back to 
his office and work with an analyst to evaluate options 
that the farmer is interested in. 

5.2  Developing and Evaluating Improved 
Crop and Livestock Systems for 
Sustainable Intensification

Debora, a plant breeder who is developing a drought- 
and heat-tolerant hybrid of maize, would like to be 

able to evaluate the potential adoption and impacts 
of her new maize varieties across the widely varying 
conditions in Africa. She would like to evaluate the 
potential of new varieties in complex mixed crop-live-
stock farming systems relative to meeting sustainable 
intensification goals, such as improving productivity, 
taking into account long term impacts on soils, water 
and greenhouse gases.

5.2.1 Capabilities and Limitations

Models of maize and other crops, livestock, and the 
farm household are also needed for this Use Case. 
These models are available for at least partially 
performing this type of analysis. The Global Futures, 
Harvest Choice, and other projects being led by IFPRI 
have used crop and economic models to evaluate the 
potential benefits of developing new technologies, 
including new crop varieties (e.g., see Singh et al. 
2012, 2013, 2014; Rosegrant et al. 2014). For example, 
Singh et al. (2012) used the DSSAT CROPGRO ground-
nut model with climate and soil condition inputs at six 
locations in India to evaluate different target traits that 
are being selected by plant breeders in the CGIAR. 
They found that the effect of combining various traits 
was beneficial, with estimated yield gains varying, 
depending on location and climate change conditions. 
Starting in the 1980s, several groups began using crop 
simulation models to evaluate alternative manage-
ment systems in developing countries (Keating et al. 
1991; Uehara and Tsuji 1998; Penning de Vries et al. 
1991). The models used in those efforts were generally 
based on the CERES and other crop models in DSSAT 
and on the ORYZA rice model developed by the Dutch 
modeling group. 

Similarly, considerable work has been done on use of 
farming system models to evaluate various options for 
improving the livelihoods of farmers. These include 
farm simulation models (e.g., Baudron et al. 2014), 
optimization models that attempt to select the best 
combination of enterprises and their management to 
achieve one or multiple goals of the farmer (usually, 
maximizing profit, for example, or maximizing utili-
ty taking into account attitudes toward risk; e.g., see 
Nicholson et al. 1994; Herrero et al. 1999; Castelan 
et al. 2003; Waithaka et al. 2006; Gonzalez-Estrada 
et al. 2008). Also, the Tradeoff Analysis (TOA) farm-
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ing system model (Stoorvogel et al., 2004; Antle, 2011) 
is currently being used as the basis for model-based 
assessments in the AgMIP project (Rosenzweig et al., 
2013) and other projects (e.g., see Claessens et al. 
2009). Furthermore, this farming system approach can 
incorporate results from crop and livestock models, 
and it has been developed such that it can be adapted 
for smallholder, as well as large commercial farming 
systems. 

However, there are important limitations in the capa-
bilities of these models. In particular, the crop models 
mostly have capabilities for simulating productivity at 
the water and nitrogen limitation levels (van Ittersum et 
al. 2003). There may be a number of other yield limit-
ing soil nutrients, soil physical constraints, and various 
pest, disease, weed, and other yield reducing factors 
that lead to actual yields in farmers’ fields that are less 
than model prediction. This is particularly true in devel-
oping countries where agrochemicals are not widely 
used to prevent these factors from reducing yields. 
Thus, there are large yield gaps between actual yields 
in farmers’ fields and the potential productivity that a 
particular variety of a crop is capable of producing in 
those fields (e.g. van Ittersum et al., 2013; Gustafson 
et al. 2014). Crop models are useful for predicting 
potential productivity as well as water-limited and 
nitrogen-limited yields of major food crops grown 
worldwide. Water or nitrogen or climate conditions are, 
of course, major factors that determine yields in devel-
oping and developed countries. When those are the 
major limitations, current crop models are highly useful, 
assuming that soil, weather, cultivar, and management 
conditions input data are available for the analyses. 
But, for this use case, it is likely that there are other 
factors, including other soil nutrients, pests, diseases, 
and weeds, that need to be taken into account. The 
challenge for next generation models includes not only 
modeling those factors but also collecting data that 
describe the production situation with all of the import-
ant yield limiting and reducing factors. 

Another major question for this Use Case is whether 
existing biophysical models can predict performance 
of the wide range intensification options that may be 
used by farmers. Some intensification practices would 
include increased fertilizer, use of some agro-chemi-
cals, modified tillage, increased plant population, soil 

additives, changing row geometries, and more precise 
timing and placement of fertilizers. They also could 
include water harvesting methods (in the field or on 
the farm), use of drip irrigation, and the use of mulch-
es to reduce soil evaporation and erosion. Although 
some of these intensification options are in use, most 
models have not been developed or tested for the wide 
range of potential changes to production systems. 
Furthermore, most biophysical models lack compo-
nents that compute sustainability metrics needed to 
assess sustainable intensification.

Livestock models also have various limitations that 
need to be addressed in the next generation of tools. 
While the understanding of animal feed requirements 
is relatively robust, there are still large errors associ-
ated with the prediction of feed intake in ruminants. 
Additionally, few of the models have the capabilities of 
predicting methane production as part of their outputs, 
and this is becoming more important as assessments 
of environmental impacts of livestock gain prominence. 
Gathering the much needed experimental information 
is required for validation purposes, especially in the 
tropics. Another area that merits more work is under-
standing how climate change is likely to affect livestock 
systems. We still cannot model the animal and herd 
responses to increased temperatures, climate vari-
ability, more severe feed fluctuations. Thus, we have 
limited ability in designing adaptation strategies in live-
stock systems. There are also few assessments of how 
feed quality and intake are likely to evolve as a result 
of climate change. The decision-making process of 
livestock farmers needs also to be better incorporated 
in whole farm models, with better rules for governing 
behavioral changes as systems intensify. 

The demand for livestock products is relatively inelas-
tic, which works in both directions in that a given 
reduction in the price of meat does not lead to the 
same proportional increase in demand. Similarily, if 
there is a substantial increase in the quantity of meat 
offered for sale, prices will fall by a larger proportion 
than the quantities offered. The same phenomenon 
tends to occur in the demand and supply for inputs for 
livestock production, in particular those deriving from 
rangeland. The net effect of these price responses to 
quantity changes is to magnify the effect of variations 
in the supply of livestock products. A classic exam-



Jones, J. W.,  J. M. Antle, B. O. Basso, K. J. Boote, R. T. Conant, I. Foster, H. C. J. Godfray,  
M. Herrero, R. E. Howitt, S. Janssen, B. A. Keating, R. Munoz-Carpena, C. H. Porter,  
C. Rosenzweig, and T. R. Wheeler

46

ple is the situation at the beginning of a drought when 
a shortage of pasture dry matter forces herdsmen to 
sell more than usual to reduce numbers. The inelastic 
demand for their product stimulates a disproportionate 
fall in prices, which further penalizes the herdsmen in 
terms of loss of income and access to money to rebuild 
their herds after the drought. Livestock system models 
need to integrate both the biophysical fluctuations 
in productivity and the likely economic responses to 
these fluctuations in order to get an accurate measure 
of the impact on the well-being of families who rely on 
livestock for a substantial part of their income.

There are also limitations in the socioeconomic 
models used for evaluating benefits and tradeoffs 
among different technologies and management of 
crops and livestock and in managing the farm and 
its resources. For example, most available econom-
ic models solve for or simulate average responses. 
In this use case, it is very important that uncertainty 
and economic risks be taken into account. Many of 
those risks are associated with variations in weather 
(particularly rainfall) from season to season and in the 
market place where farmers purchase supplies and 
sell their products. 

Input Data.  Some of the issues lie in the models them-
selves, but also in the development of comprehensive 
datasets for running the models. This is true for produc-
tion models of crops and animals as well as economic 
models across the first three Use Cases that address 
issues in data-poor areas in Sub Saharan Africa. Thus, 
the same limitations discussed in Use Case 1 are also 
relevant to this Use Case. In addition to those data 
limitations, there are various types of input data needs 
for livestock that are difficult to obtain, including species 
composition in rangelands, diet selection by animals, 
better spatial representation of feeding practices, 
adequate parameterization of the feed quality parame-
ters and how they change in space and time, improving 
productions systems descriptions, and others. 

To operate models that assess the performance of 
sustainable intensification options, data are need-
ed first of all to develop and evaluate those models. 
When models are used to address Deborah’s needs, 
input data will be needed to characterize the intensifi-
cation technologies for use in the biophysical models 

as well as to characterize the fields, farm, landscape, 
hydrology, and ecological components.

Decision Support Tools. Some progress has been 
made on information systems that allow one to 
compute sustainability metrics for specific farming 
practices. Much is being done by the private sector, 
and more public-private collaboration in defining and 
developing improved metrics of sustainability should 
be considered. However, little has been done to date 
to produce the types of decision information systems 
needed to help Deborah advise farmers on sustain-
able intensification options that are tailored for specific 
regions and farming systems.

5.3  Investment in Agricultural 
Development to Support Sustainable 
Intensification

Stanley is an investment manager for a prominent 
Foundation, and he needs to evaluate a project for 
small farms in Kenya that will increase the intensity of 
production by increasing fertilizer use per hectare on 
cash crops while maintaining the current sustainable 
nutrient balance between pasture grasses, crop resi-
dues and animal manure.

5.3.1 Capabilities and Limitations

While the capacity to solve each of these individual 
component problems has been shown in journal arti-
cles, and in some cases implemented in practice, their 
integration into a decision support system for land-
scape and regional decision has not yet been demon-
strated. In particular, the feedback loop between 
the data sensing system and the crop and livestock 
models based on primary experimental data is an 
important and untested component for assessing the 
inevitable gap between experimental results and field 
implementation. Using remote sensing systems from 
satellites and/or drones, we envisage a much more 
rapid and readily quantified flow of data that will allow 
updating and assessment of the project as it proceeds. 
We see the principal limitations for both crop growth, 
livestock, and farming system models as being due to 
sparse data rather than gaps in the conceptual theory. 
It is the formal integration of the sample points using 
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landscape scale GIS systems to provide the distribu-
tion of impacts, coupled with the rapid sequential and 
consistent updating of estimates of key parameters 
such as crop yield and water use that is an innovative 
approach incorporated in NexGen models. However, 
throughout the landscape scale analysis, the trade-
offs between the number and complexity of sampling 
points to represent the distribution of impacts over the 
landscape must be approached in a formal manner.

5.4  Management Support for Precision 
Agriculture in the US for Profitability, 
Soil Conservation, and Water Quality 
Protection

Greg is a farmer in the US, with a large corn/soybean-
based operation and a high level of mechanization fully 
equipped with auto-tracking system and high-resolution 
differential GPS. He wants to manage his fields using 
precision management of input resources to increase 
efficiency and profits and to reduce environmental risks.

5.4.1. Capabilities and Limitations 

Strategies to overcome spatial resolution in point-based 
crop models were first addressed by Basso et al. (2001) 
and Batchelor et al. (2002). Such strategies include 
running point-based models at small scales within a 
field; geospatial technologies (remote sensing, elec-
trical resistivity tomography, yield mapping) to target 
the application of models to areas with similar plant 
responses; and linking point-based models to three-di-
mensional water flow models to better represent water 
transport across the landscape (Basso et al. 2001).

The application of point-based models on small homog-
enous areas within a field has had limited success due 
to difficulties in obtaining critical fine scale soil and 
management information (soil physical characteristics, 
including rooting depth, plant population and effec-
tive tile drain spacing) necessary to run the models. A 
current limitation in most crop models is the assumption 
of uniform plant distribution. Visual observations as well 
as measurements commonly indicate that crops are not 
uniformly distributed, and therefore assuming they can 
be an unrealistic assumption and a significant source 

of uncertainty in yield simulations (Ritchie and Basso 
2008; Basso and Ritchie 2012). A correction procedure 
based on the extent of variation in plant stand uniformity 
or dominant plant density may be necessary. Correction 
also is required to compensate for yield loss from plants 
missing in a population; to some extent neighboring 
plants can compensate for missing plants as they have 
more space to intercept light. 

Recent advances on the resolution and availabil-
ity of remote sensing imagery (satellite, airborne, 
and Unmanned Arial Vehicles – UAVs) coupled with 
a decrease in their associated costs, allow for the 
collection of timely information on soil and crop vari-
ability by examining spatial and temporal patterns 
of vegetation indices (Ehmke 2013). Such informa-
tion can be used to derive inputs for crop models 
in conjunction with yield mapping analysis to iden-
tify areas in the field that are stable over space and 
time. Crop models can be executed on those areas 
to provide insights on the reason of variability as well 
as estimates of potential economic return of vari-
able-rate input prescriptions. 

The assessment of spatial soil water availability is 
crucial for understanding the interaction of water 
stress and crop yield variability in agricultural fields, 
especially now with increased climate variability and 
extended drought periods. Spatial variation in soil 
water is often the cause of crop yield spatial variabil-
ity due to its influence on the uniformity of the plant 
stand at emergence and in-season water stress. Soil 
water content is highly variable within a field due to 
spatial variation in rainfall, topography, soil proper-
ties, and vegetation. The ability to simulate spatial soil 
water content over time is important for models used 
for agricultural and hydrological systems assess-
ment (i.e. nitrate and pesticide leaching to groundwa-
ter, erosion modeling, water logging, and Precision 
Agriculture applications). 

Soil-plant-atmosphere models have proven to be 
effective in simulating the water balance of soils when 
the drainage is assumed to be vertical. However, this 
assumption is incorrect in many fields. For instance, 
runoff computed by one-dimensional models is not 
distributed over space, and thus results in inaccurate 
predictions of surface soil water balance in neigh-
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boring areas within a field. The automation of terrain 
analysis and the use of Digital Terrain Models (DTMs) 
have made it possible to quantify the topographic 
attributes of the landscape and to use topography as 
one of the major driving variables for many hydrolog-
ical models (Western et al. 1999; Wilson and Gallant, 
2000). Basso et al. (2001) developed a spatial soil 
water balance model that simulates three-dimen-
sional surface and subsurface water flow. The model 
requires a digital elevation model for partitioning the 
landscape into a series of interconnected irregular 
elements, daily weather data, and spatial soil infor-
mation for the soil water balance simulation. These 
aspects are considered a serious limitation in crop 
models and despite their importance have hitherto 
received limited attention, thus warranting additional 
improvements and testing.

An example that combines strategic and tactical 
application of a crop model in a spatial context is 
described by Basso et al. (2011). A dual-criteria opti-
mization through a tested model could determine the 
N rate that minimized nitrate leaching and increased 
net revenues for the farmer for three zones within the 
same field characterized by different yield potentials 
(Figure 9).

5.5  Supplying Food Products that Meet 
Corporate Sustainability Goals 

Jennifer, an economic analyst in a corporate sustain-
ability group, embraces sustainability as the core of 
their mission: marketing food while conserving resourc-
es. She needs to help the corporation’s contract farm-
ers with decisions regarding when to plant, when to 
irrigate and when and how much fertilizer to apply 
to conserve energy, save water, minimize waste and 
reduce greenhouse gas emissions in an effort to make 
these products more sustainable from farm to fork. 

5.5.1 Capabilities and Limitations

An example of the application of crop models to illus-
trate how reduced N fertilizer rates result in reduc-
tions of greenhouse gas emissions (expressed in 
CO2equivalents) at the field scale are described in 
Basso et al. 2013 (see Figure 10).

The next-gen crop models with capability of using real 
time weather and historical climate conditions will be 
able to identify strategies that are able to optimize the 
amount of fertilizer used at a particular location, soil 
and weather conditions with the goal of increasing 
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yield and reducing greenhouse gas emissions. Crop 
models can evaluate the effects of unknown weath-
er conditions and help decide the optimal nitrogen 
to apply to crops with different amounts within the 
field using precision agriculture prescription maps. 
Communication companies have partnered with differ-
ent high-tech companies to deliver solutions for the 
meteorological,  geo-spatial and operational challeng-
es facing the agriculture industry. Remote monitoring 
solutions, as an integral part of the Next-Gen model 
platform, along with advanced cloud services, will help 
farmers with decisions regarding when to plant, when 
to irrigate and when and how much N fertilizer to apply. 

Some of the large corporate supply chains companies 
have recently set a goal to improve fertilizer-appli-
cation efficiency of U.S. row crop farmers in its food 
supply chain by 30% by 2020. 

System models can further help these companies by 
setting emission reduction protocols, benchmarks and 
baselines to compare emissions between different 
management strategies, and by incorporating sustain-
able agricultural criteria into their future plans validat-
ing mechanism, including certification to verify that the 
farmers are meeting the sustainability criteria. 

An important aspect to consider in simulating the 
crop N uptake and soil N balance is the initialization of 
the soil carbon pool in order to properly simulate the 
soil carbon and nitrogen dynamics as pointed out by 
Basso et al. (2011).

Discussion

The history of agricultural systems modeling shows 
that major contributions have been made by different 
disciplines, addressing different production systems 
from field to farms, landscapes, and beyond. In addi-
tion, there are excellent examples in which compo-
nent models from different disciplines have been 
combined in different ways to produce more compre-
hensive system models that consider biophysical, 
socioeconomic, and environmental responses. For 
example, there are examples where crop, livestock, 
and economic models have been combined to study 
farming systems as well as to analyze national and 
global impacts of climate change, policies, or alterna-
tive technologies for different purposes. This history 
also shows that the development of agricultural system 
models is still evolving through efforts of an increas-
ing number of research organizations worldwide and 
through various global efforts demonstrating that 
researchers in these groups are increasingly interest-
ed in contributing to communities of science (e.g., via 
the global AgMIP effort, various CGIAR–led programs, 
e.g., like the IFPRI-led Global Futures and Harvest 
Choice  projects and the CIAT-led CCAFS project), the 
new CIMSANS Center being led by the Public-Private 
ILSI initiative, and the various global initiatives that 
aim to provide more harmonized and open databases 
for agriculture (such as GEOGLAM, GEOSHARE, and 
others). However, through the review of existing initia-
tives and discussions among the experts involved in 
this NextGen study, it is clear that there is a need for 
a more focused effort to connect these various agri-

Figure 10. Simulation of greenhouse gas 
emissions and maize yield for different 
N fertilizer application rates, showing 
tradeoffs between emissions and yield.
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cultural systems modeling, database, harmonization 
and open-access data, and DSS efforts together, so 
that the scientific resources being invested in these 
different initiatives will contribute to compatible set of 
models, data, and platforms to ensure global public 
goods. This is critically important, considering that 
these tools are increasingly needed to ensure that 
agriculture will meet the food demands of the next 50 
to 100 years and will be sustainable environmentally 
and economically.

These papers address several questions regarding 
the status of existing models, data, and DSS as we 
consider what is needed for NextGen agricultural 
system models. The Use Cases described in the intro-
ductory paper and discussed above demonstrate that 
a minimum set of component models are needed to 
develop agricultural system models that are more or 
less common across the Use Cases. These include 
crop models that combine weather, soil, genetic, and 
management components to simulate yield, resource 
use, and outputs of nutrients and chemicals to 
surrounding water, air, and ecological systems, taking 
into account weed, pest and disease pressures, and 
predict performance to a range of inputs and prac-
tices that represent subsistence to highly controlled, 
intensive production technologies and new varieties. 
Similarly, livestock models are needed that take into 
account climate, herd management, feed sources, 
and breeds. Farming system models are needed that 
integrate the various livestock and cropping systems, 
including their interactions, taking into account the 
socioeconomic and landscape characteristics of 
specific farms and a population of farms to address 
questions by individual farmers to policy makers at 

community to subnational, national, and global scales. 
The commonality of needs across these use cases 
should provide incentives for having the current agri-
cultural system models and their components evolve 
to address these needs. Similarly, this commonali-
ty should provide incentive for the efforts at creating 
harmonized and open databases to ensure that these 
basic needs for data will address the needs of the 
Use Cases and models. The current status also led 
us to conclude that different platforms for combining 
models and data for specific purposes will be neces-
sary, and that the design of NextGen models and data 
should take into account this need for a range of plat-
forms for applying the models and providing outputs 
needed for DSSs.

Finally, based on the current status of models, data, 
and DSS, a strategy should include the appropriate 
modification and in some cases re-programming of 
existing component models that already include many 
of the capabilities needed for NextGen, such that 
components can be extended to respond to factors 
that are not currently considered by the models, to 
facilitate the use of a range of methods, including 
statistical models and reduced form models, making 
use of extended databases and component models. 
Recent experience in AgMIP demonstrating the value 
of using multiple models should be considered so that 
time is not wasted in pursuing an unattainable goal 
of producing a perfect model for crops, livestock, and 
farming systems. The applications, as discussed here-
in via the Use Cases, should serve as strong incen-
tives for setting strategies for continuing investments 
in agricultural models, data, and DSSs.
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Executive Summary

This paper presents ideas for a new generation of agricultural system models and data that could meet the 
needs of a growing community of end-users exemplified by a set of Use Cases. We envision new models and 
knowledge products that could accelerate the innovation process that is needed to achieve the goal of achiev-
ing sustainable local, regional and global food security. We identify desirable features for models, and describe 
some of the potential advances that we envisage for model components and their integration. We also discuss 
possible advances in model evaluation and strategies for model improvement, an important part of achieving our 
vision. We conclude with a multi-pronged implementation strategy that includes more thorough testing and eval-
uation of existing models, the development and testing of modular model components and integration, improve-
ments in data management and visualization tools, and development of knowledge-products for end users.   

Towards a New Generation of Agricultural System  
Models, Data, and Knowledge Products:

Model Design, Improvement and Implementation

Outline

1. Introduction

2.  Use Cases: Implications for Second Generation 
Models

3. Designing Second Generation Models

4. Potential Advances in Model Components 

5. Towards Implementation

6. References 

63



Antle, J. M., B. O. Basso, R. T. Conant, C. Godfray, J. W. Jones, M. Herrero, R. E. Howitt,  
B. A. Keating, R. Munoz-Carpena, C. Rosenzweig, P. Tittonell, and T. R. Wheeler

64

1. Introduction

The idea of creating a new generation of agricultural 
system models and knowledge products is motived 
by the convergence of several powerful forces. First, 
there is an emerging consensus that a sustainable and 
more productive agriculture is needed that can meet 
the local, regional and global food security challenges 
of the 21st Century. This consensus implies there would 
be value in new and improved tools that can be used 
to assess the sustainability of current and prospective 
systems, design more sustainable systems, and man-
age systems sustainably. These distinct but inter-relat-
ed challenges in turn create a demand for advances in 
analytical capabilities and data. Second, as discussed 
in the companion paper on The State of Agricultural 
System Science, we now have a large and growing 
foundation of knowledge about the processes driving 
agricultural systems. Third, rapid advances in data 
acquisition and management, modeling, computation 
power, and information technology provide the oppor-
tunity to harness this knowledge in new and power-
ful ways to achieve more productive and sustainable 
agricultural systems, as discussed in the companion 
paper on Building an Open, Web-Based Approach. 

Our vision for the new generation of agricultural sys-
tems models is to accelerate progress towards the 
goal of meeting global food security challenges sus-
tainably. In this paper and the companion paper on 
information technology and data systems, we employ 
the Use Cases presented in the Introductory paper, 
and our collective experiences with agricultural sys-
tems, data, and modeling, to describe the features 
that we think the new generation of models, data 
and knowledge products need to fulfill this vision. A 
key innovation of the new generation that we foresee 
would be their linkage to a suite of knowledge prod-
ucts – which could take the form of new, user-friendly 
analytical tools and mobile technology “apps” – that 
would enable the use of the models and their outputs 
by a much more diverse set of stakeholders than is 
now possible. Because this new generation of agricul-
tural models would represent a major departure from 
the current generation of models, we call these new 
models and knowledge products “second generation” 
or NextGen.

We organize this paper as follows. First, we return to 
the Use Cases and identify key features that NextGen 
models require to meet the needs of the Use Case 
personas. Second, we discuss new approaches that 
could be used to advance model development that go 
beyond the ways that first generation models were de-
veloped, and in particular, the idea of creating a more 
collaborative “pre-competitive space” for model de-
velopment and improvement, as well as a “competi-
tive space” for knowledge product development. Then 
we describe some of the potential advances that we 
envisage for the components of NextGen models and 
their integration. We also discuss possible advances 
in model evaluation and strategies for model improve-
ment, an important part of the approach. Finally, we 
consider both near-term and longer-term strategies for 
implementation. 

2.  Use Cases: Implications for Next 
Generation Models

We now discuss the implications of the five Use Cases 
for the development of second generation models and 
knowledge products. Table 1 summarizes their char-
acteristics. 

2.1 Farm Extension in Africa

Sizani is working as a farm extension officer in an area 
in Southern Africa where many farms are very small, 
incomes are very low, and farmers typically grow 
maize and beans as staple crops for their family’s sub-
sistence and to sell for cash. She needs to have ac-
cess to analyses that help her tailor advice to specific 
farmers whose land and other endowments may vary 
considerably. Cropping system models are needed in 
this use case, either for Sizani to run through an appli-
cation on her smart phone after keying in the location 
of the farm (to access soil, weather, market and other 
databases for the simulation analyses) or to access re-
sults that have been pre-run to provide best manage-
ment options for the particular farming system. In ei-
ther case, models of cropping systems and of the farm 
household are essential, in addition to databases that 
contain information on soil, weather, markets, diets, 
nutrition, and crop varieties that are available for the 
farmer to use. Ideally, the models would have been run 
ahead of time so that information could be provided to 
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the farmer relative to costs of the new heat, drought, 
and disease-tolerant maize varieties and their perfor-
mance in terms of grain yield and fodder production 
using current management practices. Also, the app 
would provide information on the benefits of rainfall 
harvesting in terms of increasing productivity and 
stability of yield across years when rainfall is limited.  
Sizani also has access to information from farm-scale 
analyses that take into account the labor available to 
the farmer and needed to implement and manage the 
rainfall harvesting approach, and the overall costs and 
benefits to the farmer.

Cropping and farming systems models and data are 
needed to produce the results for the smart phone ap-
plication, and thus help Sizani deliver farm-specific ad-
vice to increase maize productivity and stability and to 
increase the economic and nutrition well-being of the 
farm family. The cropping system models are needed 
to simulate maize, beans, and vegetables that are pro-
duced by the farmer. In addition, the models need to 
take into account the benefits of using new varieties 
of maize and beans that are tolerant to high tempera-
ture and drought, since these are projected to increase 
under changing climate conditions. Furthermore, the 
crop models need to be able to simulate the effects 
of small increases in inorganic fertilizer as well as or-
ganic matter, and to simulate the effects of partially 
harvesting rainfall. A crop disease module is needed to 

simulate the effects of foliar diseases for susceptible 
and tolerant varieties. Together, these modules need 
to provide output information on grain, vegetable, and 
fodder production under alternative management sys-
tems. The farming system model will take into account 
the labor requirements, costs of adopting and manag-
ing new systems, and markets, providing information 
to the farmer on average benefits and risks of losses in 
particular years associated with climate variability and 
variability in disease pressure.

After the information is accessed by Sizani, she is able 
to inform the farmer of the economic benefits and risks 
associated with adoption of the new varieties, fertili-
ty management, and water-harvesting approaches on 
his farm. Sizani also informs the farmer of an app in 
the local language that can be accessed to learn more 
about the varieties, water harvesting, and nutrient 
management, and she leaves the farmer an Extension 
Fact Sheet that provides more general information, 
also in the local language, about these technologies 
and where to obtain them.

2.2  Developing and Evaluating Improved 
Crop and Livestock Systems for 
Sustainable Intensification

Xiaoming is a plant breeder/geneticist working on de-
veloping a drought- and heat-tolerant hybrid of maize. 

1 2 3 4 5
Farm Extension in 

Africa
Developing and  

evaluation technolo-
gies for sustainable 

intensification.

Investing in agricul-
tural development 

projects that support 
sustainable  

intensification.

Management  
support for  
precision  

agriculture.

Supplying for 
products that meet 

corporate  
sustainability 

goals.

Farming System small-holder small-holder small-holder commercial corp commercial corp

Information User Farm advisor Agricultural  
research  

team/program

Analyst/adviser Management 
consultant

Corporate analyst

Beneficiaries Farm family Research institution/
farm population

NGO & clients Farm business Agri-business firm

Outcomes Improved livelihood 
(income,nutrition, 

food security)

Improved  
technology

Sustainable
technology

Income, soil  
conservation & water 

quality

Profit, risk man-
agement, sustain-
ability objectives

Use cases

Table 1. Characteristics of Five Use-Cases
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She would like to be able to evaluate the potential 
adoption and impact of maize varieties with particular 
characteristics across the widely varying conditions in 
Africa. 

A maize cropping system model is needed that has 
the capability to predict the benefits of the new 
drought and heat-tolerant maize varieties under the 
range of soils, weather, and management conditions 
across the regions of interest in Africa. Furthermore, a 
household economic model is needed to evaluate the 
adoption of the new maize varieties, resources (e.g., 
access to credit, labor, and fertilizer inputs) needed 
to produce the new variety. One question would be 
about the costs of purchasing the new variety, as well 
as the benefits and risks of growing it relative to tra-
ditional varieties. Therefore, information is needed on 
the household resources and constraints as well as 
information on the yield gains expected by switching 
to the new variety and the overall impacts on the eco-
nomic livelihood of the farm family. Costs of inputs 
and likely prices of grain are needed for the economic 
model. Also, soil, weather, and management informa-
tion are needed as inputs to run the crop and house-
hold models to evaluate the switch to the new variety.

The model-based analysis needs to take into account 
the risks associated with weather variability in the short 
term as well as responses to changes in climate that 
are projected for the longer term. Assuming that the 
farmer grows other crops for food/fodder and for sale 
and has livestock, models for these other enterpris-
es are also needed. Ideally, the crop and household 
economic model would be used to perform simulation 
experiments, similar to how a randomized controlled 
trial might be performed if that were possible. Results 
from these simulation or optimization experiments 
would allow Debora to evaluate multiple factors, such 
as variability in maize grain and fodder yield, income, 
return on investment, and nutrition.

2.3  Investment in Agricultural Development 
to Support Sustainable Intensification

Carlos is an investment manager for a prominent 
Foundation, and he needs to evaluate a project for 
small farms in Kenya that will increase the intensity 
of production by increasing fertilizer use per hectare 

on cash crops while maintaining the current sustain-
able nutrient balance between pasture grasses, crop 
residues and animal manure. Carlos wants to eval-
uate whether the higher crop yields would induce a 
non-sustainable system once the initial period of fertil-
izer subsidies and extension was completed. 

Given that the proposed project extends over a sub-
stantial area of many thousands of hectares, any anal-
ysis will have to be presented on the landscape basis. 
However it’s equally important that the heterogeneity 
of the agricultural resource base, and thus the differing 
yields and potential fertilizer response, is also repre-
sented. To achieve this, an integrated whole-farm sys-
tem model is needed with crop, livestock, economic 
and environmental components. 

Sampling sets of regional parameters that can be rep-
resentative of the landscape as a whole is necessary 
before implementing crop or livestock production mod-
els. The analyst is faced with balancing the accuracy of 
representation of the landscape against the prolifera-
tion of model runs and their associated expenses. This 
first step in project design requires careful summaries 
of the range of soils, altitudes, microclimates, and wa-
ter resources systems in the whole area. 

Since animal production is an integral part of the 
farming system, the livestock model should be inte-
grated with the smallholder crop models. Ideally both 
livestock and crop models can be run simultaneously 
thus showing the nutrient flows between different pro-
duction sectors and the sustainability of the system as 
a whole. The type of cropping system model used, will 
have year-after year carry-over of soil carbon, soil fer-
tility, residue return, and use of both animal manures 
and inorganic fertilizer. 

Samples of crop yields, input changes, and respons-
es to fertilizer policy are generated by the integrated 
plant growth and livestock models. They are then 
used to populate the distribution of productivity and 
economic and social impacts from changes in fertilizer 
extension policy in the different regions sampled on 
the landscape. For this stage of analysis, Carlos can 
use an economic impact assessment model driven 
by an empirical distribution of characteristics across 
the landscape. The change in risks to different metrics 
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such as income level, nutritional balance, and distri-
bution of benefits across farm sizes is essential for as-
sessment of the project.

To integrate the information from these three stages 
into the decision model Carlos needs a dashboard 
application that he can access from his laptop com-
puter. Using this application, he can set up an assess-
ment, enter data supplied with the project proposal, 
and link to general data layers available for the region. 
The dashboard provides a variety of ways for Carlos 
to visualize the model outputs and prepare them for 
presentations to his organization. 

2.4  Management Support for Precision 
Agriculture in the US for Profitability, 
Soil Conservation and Water Quality 
Protection

Greg is among an increasing number of commercial 
growers with interests in Precision Agriculture.  De-
spite the rapid advancements of sophistication and 
automation of farm equipment in recent decades, 
there is still a vital part of the equation that remains in-
complete – the analysis of the vast amount of available 
data that gives farmers like Greg a map of what action 
to take where and when. Most of the variable rate ap-
plication he and others currently rely on is based on 
rules of thumb and empirical approaches, as opposed 
to a systems approach that accounts for the interac-
tion of soil, crop, management, and weather. 

Process-oriented crop growth models simulate the ef-
fects of genetics, management, weather and stresses 
on the daily growth of crops using carbon, nitrogen and 
water balance principles. The strength of these mod-
els is their ability to account for stress by simulating 
the temporal interaction of stress on plant growth each 
day during the season. Thus, they tend to be sensitive 
to temporal patterns of stress. However, these models 
were designed for homogeneous areas, and as a re-
sult, inputs that are spatial in nature must be assumed 
to be uniform. Furthermore, spatial characteristics are 
often unknown or difficult and expensive to measure. 
The advent of Precision Agriculture has resulted in the 
need to extend the use of point-based crop models to 
account for spatial processes. Crop models can pro-

vide useful estimates of potential economic return for 
management recommendations, along with the sen-
sitivity of a recommended management action in re-
sponse to weather variability. The next generation of 
crop models for Precision Agriculture will account for 
spatially connected processes and use publicly avail-
able data on soil type, weather forecasts, along with 
location specific data from farmers’ yield maps, to pro-
vide a prescriptive crop management plan on a very 
high spatial resolution.

2.5  Supplying Food Products that Meet 
Corporate Sustainability Goals 

Sophia is an economic analyst in a corporate sustain-
ability group. This group has embarked on efforts to 
make sustainability the core of their mission: market-
ing food while conserving resources. She is assessing 
the life cycle of food products to find ways to conserve 
energy, save water, minimize waste and reduce green-
house gas emissions in an effort to make these prod-
ucts more sustainable from the farm to fork.

The system models needed to support supply chains 
in their pledge for sustainability are the same system 
models described in the precision agriculture user 
case. Crop system models are able to simulate the an-
nual fluxes of N2O from soils under different pedo-cli-
matic and management conditions rather well, but 
their performance requires improvements when simu-
lating the daily fluxes of N2O. As N2O is directly linked 
to the amount of fertilizer used, the next-gen models 
will play a crucial role in identifying the optimal N rate 
that maximizes profits and reduces nitrous oxide emis-
sions and nitrate leaching.

2.6  Implications for Second Generation 
Models and Data

Table 2 summarizes a number of agricultural system 
model features that are suggested by the Use Cases. 
These have important implications for the design of 
new-generation models and knowledge products. 

• All of the small-holder use cases (1-3) require 
whole-farm models, and decision-makers in the 
commercial crop use cases (4 and 5) are likely to 
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Farm 
Extension

Improved 
Systems

Investment in 
Sustainable 

Intensification Precision Ag

Sustainable 
Value 
Chains

System Features
 - single production activity ? ? x x
 - multiple production activities x x
 - interacting activities ? ? ?
 - whole farm x x x ? ?

Data (spatially referenced)
 - single activity ?  x
 - individual farm x  x
 - representative sample x x x

Outputs
 - bio-physical production (yield) x x x x x
 - economic (profit, income) x x x x x
 - environmental x x x x
 - social x x x

Output Access
 - model ?
 - mobile app x x
 - computer dashboard ? x x x

Spatial Scale
 - field x x
 - farm x x
 - region (many farms) x x x

Temporal Scale
 - within-season x ? x
 - season x x x x x
 - multiple seasons x x x

Use Cases

Table 2. Model and Data Features Implied by the Use Cases Defined in Table 1
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want whole-farm information as well, even if the 
specific use case (e.g., precision nitrogen applica-
tion) does not require it. 

• All cases need spatially referenced data, but the 
type and resolution of data required varies across 
the Use Cases.

• All of the Use Cases need biophysical production 
outputs and economic outputs. The need for envi-
ronmental and social outputs is case-specific. 

• Most, if not all, of the personas in the Use Cases 
would want to access model outputs via a dash-
board application that would probably run on a 
laptop or larger tablet to facilitate visualization and 
integration of outputs with other applications and 
data, although some farm decision-makers or farm 
advisers might only want mobile applications. 

• Only one of the Use Cases might want direct ac-
cess to model output (the scientist Use Case 2). 

• The spatial scale of the data needed varies by 
case, but all cases need season-specific data. 
Some farm-level uses will need within season data 
(e.g., for pest management or precision nutrient 
application).

There are several striking findings: All the Use Cas-
es require whole-farm systems models; all require 
both biophysical production and economic outputs: 
all would need at least season-specific, spatially ref-
erenced data; and the farm-level decision makers 
are likely to need within-season data. Also striking is 
the fact that only one of the personas (the scientist) 
might want direct access to model output. An import-
ant group of model users not highlighted here is the 
science community itself that is developing and us-
ing models for research. Even among the scientists 
themselves, it is often the case that one user (say, 
an economist) does not require the output of another 
model (say, a crop model) in the form it comes out of 
the model, but would rather have the output put into a 
format suitable for further manipulation. As these use 
cases illustrate, this is even more so for non-scientist 
users: there are few if any users that require direct ac-
cess to the model output. 

From the companion paper on The State of Agricul-
tural Systems Science, we know that few if any agri-
cultural models currently available meet the needs of 
the five Use Cases. Few provide whole-farm analysis 
capabilities, for example, or make model outputs ac-
cessible through user-friendly web-based dashboard 
applications. Thus, we can conclude that there is a 
substantial gap to be bridged between current models 
and the capabilities needed to provide information that 
would be useful to most potential users. 

 3. Designing Next Generation Models

Given the gap between the current state of agricultural 
systems models and the needs of actual and potential 
users, this section discusses how the new generation 
of models can be created to bridge this gap and real-
ize the vision for next generation models presented in 
the Introduction. 

3.1  A Demand-Driven, Forward-Looking 
Approach

A first step towards realizing the potential for agricul-
tural systems models is to recognize that until now, 
most model development has been motivated by re-
search and academic considerations, not by user 
needs. This means that the model development com-
munity needs to turn the model development process 
“on its head” by starting with outcomes and working 
back to the models and data needed to quantify rel-
evant model outputs. For example, the Use Cases 
show that in most cases whole-farm models are need-
ed, and particularly for small-holder farms, models 
are needed that take into account interactions among 
multiple crops and often livestock. Yet, many agricul-
tural systems models represent only single crops and 
have limited capability to simulate inter-cropping or 
crop-livestock interactions. 

Another feature is that many models produce only es-
timates of biophysical quantities of crop or livestock 
production (e.g., crop yield) or basic economic vari-
ables such as net returns to a crop activity. Why? Mod-
els of single crops are easier to create, require less 
computational resources, and are driven by a smaller 
set of data than models of crop rotations, inter-crops 
or crop-livestock systems. But perhaps more impor-
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tantly, researchers are typically responding to the in-
centives of scientific institutions that reward advanc-
es in science above all else.  As a result, research on 
component processes within single crops may be 
more researchable within a laboratory or institutional 
setting, and may result in more publishable findings. 
The reward for producing useful decision tools for 
farmers or policy decision-makers may be minimal in 
academic settings. 

While it is clear that model development should be 
much more driven by user needs, it is also important 
to recognize that science informs stakeholders, about 
what may be important, and about what may be possi-
ble. People know, in a general way, what they want, but 
they may have no idea what kind of science is need-
ed to meet that need. Henry Ford famously said, “If 
you had asked people what they wanted, they would 
have said ‘faster horses’.” We can safely assume that 
potential users of agricultural systems models want a 
secure and sustainable supply of food.  Who imagined 
even a few years ago that we might accomplish that 
goal, in part, by using data collected by aerial drones 
linked to agricultural systems simulation models? 

So while model and data development need to be 
driven by user-defined needs, they must also be for-
ward-looking, using both the best science and the 
imagination. 

3.2 A Systems Approach

The Use Cases show clearly the need for whole-farm 
systems approaches. Agricultural systems are man-
aged ecosystems (or agro-ecosystems) comprised 
of biological, physical and human components op-
erating at various scales (e.g., cell, organism, field, 
farm). Farms are embedded within larger ecological 
and human systems operating at regional scales (e.g., 
watershed, population), as well as larger (continen-
tal, national, global) scales. It is typically important to 
consider many different interactions within and among 
these systems if we are to meet stakeholder needs for 
actionable outcomes. 

The systems approach has several important implica-
tions for second generation models. Within each sys-
tem level, a set of interacting sub-systems is involved. 

This suggests the possibility of constructing models of 
large, complex systems by combining models of mod-
ular sub-systems. The level at which modularization 
may be possible remains an important question, and 
this in turn has implications for software engineering. 
For example, as discussed in the companion State 
of Science paper, many crops are now modeled in-
dividually and separate from livestock. Systems with 
multiple interacting crops (e.g., through rotations or 
inter-crops), livestock, and crop-livestock interactions, 
are needed for various Use Cases, raising the question 
whether these interacting components can be incor-
porated in a modular “plug and play” system. Also, 
these biophysical production system components in-
teract with economic-behavioral components and en-
vironmental components. These interactions among 
sub-systems imply the need for standard ways to link 
inputs and outputs among sub-systems. 

Another important issue raised by the systems ap-
proach is the appropriate level of complexity for Use 
Cases, an issue discussed further in section 4.7. Re-
search in environmental modeling indicates there are 
often diminishing returns to complexity. Similarly, ex-
perience with economic modeling has shown the val-
ue to “minimum data” or “parsimonious” approaches 
(Antle, Stoorvogel and Valdivia 2014). These ideas also 
relate to the need for a more generic approach (sec-
tion 3.4 below).  

The small-holder Use Cases illustrate the need for a 
systems approach at the farm level. In order to assess 
the well-being of the farm family in terms of income 
and nutrition, all relevant economic activities of the 
farm household need to be taken into consideration, 
including the income generated by the farming activ-
ities as well as other non-agricultural activities of the 
household members (e.g., off-farm work). Additionally, 
because the farm often involves multiple production 
activities, including crops and livestock, all of these 
activities and their key interactions need to be repre-
sented, as illustrated by the circular flow of nutrients 
from crops to livestock in the form of crops, crop res-
idues and household waste fed to livestock, and then 
back to crops in the form of manure and composted 
materials. 

The commercial-crop Use Cases also illustrate the 
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need for a systems approach. Crop rotations are im-
portant to the management of soil fertility and soil 
pests, and thus play a key role in achieving more sus-
tainable management of input-intensive systems. It is 
also likely that to improve the sustainability of large-
scale systems, it will be necessary to move towards 
more diversified systems that use crop rotations and 
integrate crops with livestock. The commercial-crop 
Use Cases also illustrate the need for assessments 
of landscape-scale impacts, including water quality 
(through soil and chemical runoff and chemical leach-
ing), biodiversity (through impacts of fish and other 
wildlife), and greenhouse gas emissions (e.g., through 
soil management and fertilizer use). Similar types of 
assessment are needed to design and evaluate sys-
tems that meet the goals of “sustainable intensifica-
tion” and “climate-smart agriculture.”

3.3  An Open, Pre-Competitive Space for 
Model and Platform Development 
Linked to a Competitive Space for 
Knowledge Product Development

Figure 1 presents a diagram of the linkages between 
the “pre-competitive space” of basic science and 
model development, and the “competitive space” 
of knowledge product development. The arrows be-
tween these two “spaces” point both ways to repre-
sent the inevitable and important give-and-take. There 
is a need for a demand-driven but forward-looking 
process that enhances interactions between these 
two realms. The concept of “pre-competitive space” 
grew out of the efforts of the pharmaceutical industry 
to collaborate on basic research while competing in 

product development. We think this distinction is also 
useful for thinking about how we might develop and 
apply agricultural systems models, while recognizing 
that there is also a competitive element among the re-
searchers in the model development arena. 

Facilitating a pre-competitive environment is likely to 
require innovations in the way research organizations 
operate, and may need to involve public-private part-
nerships (PPPs). PPPs are one way that science and in-
dustry can collaborate to generate new applied knowl-
edge that can feed into the creation of new business 
and services. In PPPs it is common that both private and 
public partners provide funding and jointly formulate the 
research questions that can subsequently be tackled by 
research institutes and universities. There are a number 
of challenges in structuring PPPs. For example, in the 
European Union PPPs have been regulated to avoid un-
fair competition. The EU regulations stipulate that there 
always has to be more than one private partner involved 
and intellectual property rights of the knowledge devel-
oped (e.g., tools, models, articles, methods) belong to 
the research partner, which can then license the use to 
private partners for commercial purposes.

An important aspect for a NextGen community of 
practice is openness. Open here means: first, inviting 
and engaging others to join and become involved; sec-
ond, being ready to jointly set priorities with a broader 
stakeholder community (i.e. research programming, 
private partners, policy partners, non-governmental 
organizations); and third, being transparent for scien-
tific and public scrutiny of methods, tools and results 
through not-solely scientific venues. Only a few of the 

Fig. 1. Possible 
Linkages between the 
Pre-Competitive Space 
of Model and Data 
Development and the 
Competitive Space of 
Knowledge Product 
Development
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agricultural systems models now in use can be said to 
be “open” in the sense that both the model equations 
and programming code are fully documented and free-
ly available to the community of science. Establishing 
an open approach consistent with the principles of 
good science, including sufficient documentation and 
sharing of code to allow replication of results with rea-
sonable effort, should be a priority of the practitioner 
community. Such an approach would facilitate model 
improvement through peer review, model inter-com-
parison and more extensive testing, new modes of 
model improvement and development such as crowd 
sourcing, and education of the next generation of mod-
el developers and users. Creating this open approach 
would also raise challenges related to incentives and 
intellectual property that would need to be addressed. 
The recent positive experience with the Agricultur-
al Model Inter-comparison and Improvement Project 
(AgMIP; Rosenzweig et al. 2013), a new community of 
science dedicated to an open approach, suggests that 
researchers are now ready and willing to participate. 

An open approach will also encourage the emergence 
of competing models and modeling approaches, rath-
er than a single “super model.” One dominant “su-
per-model” could eventually emerge. But the only way 
to know that such a model is desirable is to allow a 
multi-model environment to flourish. We also expect to 
see alternative approaches emerge as modelers tack-
le challenging features such as representation of het-
erogeneity and dynamics and linkages across scales. 
For models to be tractable, tradeoffs have to be made, 
and an open approach is needed to facilitate the test-
ing of alternative solutions. 

There are important examples of recent efforts at cre-
ating a more open approach to agricultural model 
development. The bio-economic farm model FSSIM  
(Janssen et al. 2010) was made available as open source 
in 2010 after completion of its main project-related de-
velopment and published with a license that allowed fur-
ther use and extension. The open sourcing of the model 
was combined with training sessions, but this did not 
lead to spontaneous community uptake and large-scale 
development. The DSSAT crop modeling community is 
undertaking an effort to make its code open-source 
with the participation of more than 20 developers. The 
Global Trade and Analysis Project has provided exten-

sive documentation of its model and data and allows 
user-modification of its standard model (Global Trade 
Analysis Project, 2014), and there is a large number of 
users of the model globally. The IMPACT model devel-
oped by the International Food Policy Research Center 
is publicly documented and available to other research-
ers (Rosegrant 2012). The TOA-MD regional model for 
technology adoption and sustainability assessment of 
agricultural systems is fully documented along with a 
self-guided learning course. Model code is available to 
“registered users” who have signed an end-user license 
agreement that requires acknowledgment of the devel-
opers and allows only research and other public-good 
uses (Antle, Stoorvogel and Valdivia 2014). There are 
now more than 500 registered users of the model, but 
only a few have shown interest in modifying or further 
developing the model independently, possibly because 
it is programmed in a language that relatively few re-
searchers use.

To achieve the goal of demand-driven model develop-
ment, it will be necessary to strengthen the linkages 
between the pre-competitive space of model develop-
ment and the competitive space of knowledge product 
development. The current state of affairs appears to 
be that, on the one hand, the modeling community is 
strong on analytical capability but weak on linkage to 
user demand; while on the other hand, the developers 
of user-related farm-level products (e.g., providing data 
from mobile devices) are weak on analytics. Thus, there 
appears to be the opportunity for “gains from trade” by 
facilitating more interaction between the two commu-
nities. An important part of this interaction has to be to 
identify the key research that could enable better ser-
vice delivery to knowledge-product users. Additionally, 
as emphasized in the Use Cases, there is a public good 
value to enhancing a broader community that can pro-
vide both data and analytics for public investment and 
policy decision-making. These issues are further de-
veloped in the companion paper on Building an Open 
Web-Based Approach.

3.4  New Approaches to Data Acquisition, 
Management and Use

The explosion in the availability of many kinds of data 
and the capability to manage and use it creates new 
opportunities for systems modeling at farm and land-
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scape scales. Figure 2 presents an example of the 
possible types of private and public data that could be 
generated and used for both farm-level management 
(as in Use Cases 1, 4 and 5) and landscape-scale in-
vestment and policy analysis (Use Cases 2, 3 and 5). 
Some of these data would be generated and used at 
the farm-level, others would be generated and used 
for landscape-scale analysis to support investment 
decision-making and science-based policy-making. 
While farm-level decision making and landscape-scale 
analysis have different purposes, they both depend on 
two kinds of data:

• Private data: site- and farm-specific characteris-
tics of the land and the farm operation, and the 
site- and farm-specific management decisions 
that are made. These data can be used to evalu-
ate the farm’s biophysical, economic, and environ-
mental performance.

• Public data: weather, climate, soils, and oth-
er physical data describing a specific location, 
as well as prices and other publicly available 
economic data (note that not all public data is  
accessible).

A key question for the design of the agricultural knowl-
edge infrastructure is how both types of data can be 
collected, managed and utilized efficiently and secure-
ly. Figure 2 is a design envisaged for a setting where 
farm decision-makers are able to utilize advanced de-
cision tools that would be integrated with cloud-based 
data and computing resources. Although such tools 
may currently only be feasible in high-income coun-
tries, we expect they will become increasingly avail-
able throughout the world.   

3.5.  Credibility, Uncertainty and Model 
Improvement

A clear message from the NextGen Stakeholder Work-
shop was that model credibility is a key issue limiting 
the use of models for decision-making.  In some areas 
of commerce where long-term projections are import-
ant, for example the insurance industry, there has been 
growing acceptance and use of quantitative climate 
models and impact assessment models. But for many 
decision-makers, ranging from farmers and agribusi-
ness, to the development donor community and gov-
ernment, quantitative models remain an arcane and 
poorly understood part of science. 

Site-specific 
Private land management data

(inputs and outputs)

Site- and farm-specific 
economic and environmental analysis

(tracking and verifying data for 
certification and green labeling, or 

regulatory standards)  

Confidential 
land 

management 
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and 
research use

Landscape-scale data 
and models

Policy analysis & research models, data 
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Fig. 2. Possible 
linkages between 
data and decision 
tools at farm and 
landscape scales 
(source: Antle, 
Capalbo and 
Houston 2014).
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There are many aspects to establishing, maintaining 
and improving model credibility. First and foremost, 
models must be relevant to user’s information needs. In 
addition, the participants in the Stakeholder Workshop 
emphasized the need to communicate what models 
are, what they can and cannot do, and to quantify and 
communicate model uncertainty effectively so that us-
ers understand how to use model outputs. But besides 
being relevant to users’ needs, models must perform 
well enough to be judged credible and useful. As the 
companion paper on The State of Agricultural Systems 
Science shows, there are many short-comings of cur-
rent models’ capabilities that limit their relevance and 
usefulness for the Use Cases described here and the 
others discussed in the NextGen Stakeholder Work-
shop. Thus, achieving NextGen goals will involve de-
veloping better data and methods to evaluate model 
performance, both to help developers improve them 
and to help inform end-users about their validity and 
reliability. 

There are potentially many different uses of models, 
from basic science to on-farm management to policy 
decision-making. The criteria for a “useful” model dif-
fer among these. For some science purposes, a high 
level of precision may be needed, whereas for policy 
analysis, the timeliness of the information produced 
may be much more important than its precision or ac-
curacy. Thus model evaluation involves devising ap-
propriate performance criteria, including overall model 
performance in providing outputs desired by end-us-
ers, as well as criteria for modules that can be used for 
component improvement. 

Several types of formal model evaluation techniques 
have been developed to assess complex systems 
model performance under current as well as future 
conditions. Evaluation under current conditions can 
be based on comparison with observed data through 
numerical, graphical, and qualitative methods. An ex-
tensive survey of general classes of direct value com-
parison, coupling real and modeled values, preserving 
data patterns, indirect metrics based on parame-
ter values, and data transformations is presented in  
Bennet et al. (2013). As explained by the authors, sys-
tems modeling requires the use and implementation of 
workflows that combine several methods, tailored to 
the model purpose and dependent upon the data and 

information available. A five-step procedure for perfor-
mance evaluation of models is suggested, with the key 
elements including: (i) (re)assessment of the model’s 
aim, scale and scope; (ii) characterization of the data 
for calibration and testing; (iii) visual and other analy-
sis to detect poorly or non-modeled behavior and to 
gain an overview of overall performance; (iv) selection 
of basic performance criteria; and (v) consideration 
of more advanced methods to handle problems such 
as systematic divergence between modeled and ob-
served values.

The evaluation of integrated models under future 
conditions cannot be directly assessed as available 
data may not be representative; this is particularly the 
case where the model includes an intervention that 
will change the behavior of the system. Instead, con-
ceptual understanding of the system weighed against 
future projections can provide complementary lines 
of evidence in the assessment of the model. Global 
sensitivity and uncertainty analysis (GSA/UA) of future 
projections based on tailored scenarios provides a 
rich platform in the conceptual analysis of the mod-
els (Saltelli et al. 2004). GSA/UA provides a detailed 
understanding of the important factors and underlying 
processes driving the numerical model output vari-
ance under particular scenarios that can be compared 
with conceptual models of the system. The statistical 
techniques used also offer the opportunity to identi-
fy surprises in the future system behavior, as well as 
important feedbacks and non-linearities. GSA/UA also 
allows the modeler to: (1) examine model behavior 
(model check); (2) simplify the model based only on 
its important components; (3) identify important in-
put factors and interactions to guide the calibration of 
the model; (4) identify input data or parameters that 
should be measured or estimated more accurately to 
reduce the uncertainty of the model outputs; (5) iden-
tify optimal locations where additional data should be 
measured to reduce the uncertainty of the model; and 
(6) quantify the uncertainty of the modeling results 
(Saltelli et al. 2005).

Another approach to model improvement that has 
been pioneered in the climate modeling field is inter-
comparison of models, implemented through the es-
tablishment of the Coupled Model Intercomparison 
Project (Taylor et al. 2012. By establishing protocols 
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for the use of “reference scenarios” it is possible to 
inter-compare model results, identify important differ-
ences in model outputs, and through this process ulti-
mately improve the models and their performance rel-
ative to the criteria described above. The use of model 
“ensembles” is also considered by some researchers 
as a way to characterize model uncertainty, although 
this interpretation is controversial. Model ensembles 
have been shown to perform better in some respects 
than individual models, suggesting the use of ensem-
bles as a way to improve performance (Martre et al. 
2014). A limitation of the ensemble approach is that 
it requires a relatively large number of alternative, in-
dependently developed models. In many cases, there 
are not enough distinct models to make model in-
ter-comparison or ensemble approaches useful. 

4. Potential Advances in Model 
Components 

We next present examples of potential improvements 
that are important and may be achievable in the dis-
ciplinary components of agricultural systems models. 
We begin with a set of cross-cutting issues that are 
common to all of the model components, and then 
focus on disciplinary themes. 

4.1 Cross-Cutting Issues

4.1.1 Representing and Incorporating 
Human Behavior into Agricultural 
Systems Models

Agricultural systems are managed by people for 
people. The objectives of the people using the in-
formation generated by models, and the behavior of 
decision makers whose behavior is represented in 
models, must influence model design. Most existing 
models have a limited capability to represent eco-
nomic or other behavioral motivations of decision 
makers.  This is a cross-cutting theme in modeling 
because the management decisions made by farm-
ers related to crop and livestock productivity as well 
as to economic costs and returns as well as envi-
ronmental and social outcomes. There are several 
ways that behavior needs to be incorporated into 
NextGen models. 

First, a better understanding of decision maker ob-
jectives is needed if we are to develop models that 
provide information to farm managers to improve de-
cision making. For example, if production risk man-
agement is an important objective of decision makers, 
then they will need different kinds of information than 
if production risk is not a major issue. Thus, model-
ers need to know what managers think are the major 
production risks. Note, however, that in this case the 
actual behavior of the decision makers does not need 
to be modeled. The goal is to inform decision making, 
not to make decisions for farmers. 

Second, for models that are designed to predict or 
project plausible outcomes or impacts of decisions 
made by farmers, the behavior of the decision makers 
must also be modeled. This need adds a large amount 
of additional complexity above and beyond the capa-
bility of modeling bio-physical production processes. 
Knowing what behavioral models are most useful for 
the Use Cases (e.g., profit maximization, risk manage-
ment, achieving social status, other social or environ-
mental objectives) is a key issue that needs to be ad-
dressed in NextGen model development. 

Third, the social dimension of farmer decision mak-
ing needs to be better understood and represented 
in models, including how social interactions influence 
decision making. Agent-based models incorporate 
interactions among “agents”, i.e. farmers, but lack a 
rigorous foundation for the rules that govern behav-
ior. Modeling social interactions is an active area of 
economic research, but data demands are high and 
as yet empirical generalizations that could be used to 
structure models are not available. Other social scien-
tists also study social interactions, but typically using 
qualitative methods that also are difficult to translate 
into quantitative models. 

4.1.2 Representing Heterogeneity 

A key fact that has emerged from the increasing avail-
ability of field- and farm-level data is the high degree 
of biological, physical, economic and social heteroge-
neity of agricultural systems, in both space and time. 
The farms represented by the use cases demonstrate 
this point: among smallholder maize-based farms 
in Kenya, for example, coefficients of variation of 
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key characteristics like farm size are on the order of 
100% or more; for commercial crop farms in the Unit-
ed States, they are also large, ranging from 50-150%. 
This heterogeneity has several important implications 
for how we represent agricultural systems in models:

• Accurate representation of bio-physical process-
es (e.g., crop growth, chemical leaching, erosion, 
chemical runoff) requires site-specific data (i.e., 
soils, slope, weather, management). 

• Accurate representation of economic and social 
processes and outcomes (e.g., income and nu-
tritional and food security) requires person- or 
household-specific data.

• Modeling environmental outcomes requires an in-
tegrated treatment of bio-physical processes and 
farmer decision making processes, and thus con-
sistency between the spatial and temporal units of 
both types of processes. 

• Representation of important economic, social and 
environmental outcomes at scales relevant to in-
vestment or policy decision making requires pop-
ulation-level outcomes that can be expressed not 
only as means or averages but more generally as 
distributions of outcomes. Only then is it possible 
to use indicators based on threshold concepts to 
represent vulnerability (e.g., poverty rates, risk of 
food insecurity, environmental risk, etc.). 

• Behavioral heterogeneity is recognized in eco-
nomics as one of the most important but also 
methodologically challenging aspects of model-
ing, because decision maker characteristics (e.g., 
experience, capability, motivations) are difficult to 
quantify and typically unobserved by the analyst. 

4.1.3 Representing Dynamics

Agricultural systems are inherently dynamic. For exam-
ple, crop growth occurs over time within the growing 
season, and crop productivity across growing seasons 
depends on crop rotations and other dynamics of the 
system. Most bio-physical system component mod-
els (crop growth, livestock growth, environmental pro-
cesses) are inherently dynamic, but can only represent 

heterogeneity to limited degrees. Economic behavior 
depends on expectations of future outcomes, and de-
cisions are made sequentially, with information being 
acquired as decisions are made and realizations are 
observed. Some management decisions like fertiliza-
tion rates are based on intra-seasonal processes (get-
ting the highest profit that season); other longer-term 
decisions span multiple growing seasons (multi-sea-
son crop rotations; machinery investments; livestock 
purchases and sales, and perennial crop planting and 
management decisions). Similarly, it is challenging to 
represent both dynamics and heterogeneity in eco-
nomic models, and most dynamic models are highly 
simplified or stylized. The challenge is even greater 
when multiple dynamic model components are linked, 
due to differences in spatial and temporal units and 
overall model complexity. 

Dynamics are often critically important at the region-
al scale. Witness, for example, the impact of weather 
shocks on regional food prices in some parts of the 
world, particularly in less-developed regions. Progress 
in modeling system dynamics is thus essential. How 
to achieve this progress in a tractable and useful way 
should be a priority for NextGen research. 

4.1.4 Pathway and Scenario Design

Everything that influences an agricultural system, 
whether at the field, farm or regional scale, cannot be 
modeled. Consequently, most modeling is based on 
a logical structure in which some factors (“drivers”, or 
exogenous variables) take on values specified by the 
modeler or the model user. How these drivers are set 
or modified to represent the conditions under which 
the analysis is being carried out is a key aspect of 
modeling that has been under-studied. The issue is 
now receiving more attention in climate research (cite 
Moss, SSPs), but needs to receive more attention from 
the model development community. In particular, if 
models are to be linked to end-users through knowl-
edge products, the user needs to understand the con-
text in which the analysis or “simulation experiment” is 
being conducted. There has been little attention paid 
to how end-users could define or select those condi-
tions or assumptions in which the modeling is carried 
out. These issues relate directly to the considerations 
of relevance and credibility discussed above. 
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For agricultural systems modeling AgMIP has been 
developing more systematic approaches to develop-
ment of “pathways” (plausible future conditions) and 
“scenarios” (specific parametric representations of a 
system consistent with a pathway), using the concept 
of Representative Agricultural Pathways (Valdivia et al. 
2014). Further work is needed to better develop these 
methods for use at farm, regional and global scales. 

4.2 Crop Systems

Next steps in developing next-generation crop models 
fall into several categories: significant improvements in 
simulation of important crop processes and respons-
es to stress; extension from simplified crop models to 
complex cropping systems models; and scaling up 
from site-based models to landscape, national, conti-
nental, and global scales.

4.2.1  Key crop processes that require 
quantum leaps in improvement

Several crop processes require major advances in 
understanding and simulation capability in order to 
narrow uncertainties around how crops will respond 
to changing atmospheric conditions. Experimental-
ists and modelers need to work together from the 
outset to ensure that the right research questions are 
posed as experiments are planned, critical field data 
are gathered at appropriate times, and process-based 
understanding is captured so as to transfer new in-
sights from the field to the crop models directly and 
expeditiously. 

Genetics. Developing predictive capacity that scales 
from genotype to phenotype is challenging due to bio-
logical complexities associated with genetic controls, 
environmental effects, and interactions among plant 
growth and development processes. Crop model im-
provements are needed to link complex traits at gene 
network, organ, and whole plant levels. Phenotypes 
are linked to changes in genomic regions via associ-
ations with model coefficients (Hammer et al., 2006). 

Carbon, temperature, water, and nitrogen. Crops are 
already experiencing higher levels of carbon dioxide 
(CO2) and temperature in agricultural regions around 
the world. Understanding of how accelerated rates of 

CO2 and temperature rise will interact to affect crop 
growth and productivity is growing, but this improved 
understanding needs to be incorporated into crop 
models (Leakey et al., 2009). Water relations of soils 
and crops are also of perennial importance and car-
bon-nitrogen cycling plays a crucial role in sustainable 
intensification. The simulation of all of these process-
es and their interactions and management, especially 
under conditions of stress, needs to be radically im-
proved. 

Ozone. The magnitude of ozone damage is expected 
to be comparable to climate change in the next sever-
al decades, but ozone damage is rarely considered in 
crop modeling studies (Leisner and Ainsworth, 2012). 
Information about ozone impacts on crop yields is 
available, but damage processes and functions need 
to be developed. Model improvements in regard to 
ozone effects on crops include inclusion of ozone re-
sponse functions and comparison of response func-
tions with process-based approaches such as leaf 
conduction, aerodynamic boundary-layer resistance, 
and whole canopy conductance parameterizations. In 
order to learn much more about the different respons-
es of different crop species and varieties, ozone data 
collection should be incorporated into the AgMIP pro-
tocols for sentinel sites experimental design.

Nutrition. Crop modelers, breeders, physiologists, and 
human health and nutrition researchers need to broaden 
the scope of modeling to include key nutritional process-
es and future risk of hunger. This requires moving from 
a yield-only perspective to one that includes processes 
that affect nutritional quality. Non-staple crops, for which 
crop models have not been developed, are likely to be-
come increasingly important (Müller et al. 2014). 

4.2.2 Extension from ‘crop models’ to 
‘cropping system models’

The field of crop modeling has been built on a single 
crop-by-crop approach. It is now time to create a new 
paradigm, moving from ‘crop’ to ‘cropping system.’

Intercrops and complex rotations. A first step is to set 
up the simulation technology so that modelers can 
rapidly incorporate multiple crops within fields, and 
multiple crops over time. Then the response of these 
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more complex cropping systems can be tested under 
different sustainable intensification management strat-
egies utilizing the updated simulation environments. 
Similarly, studies can be performed to determine opti-
mal cropping systems and management strategies for 
particular desired outcomes.

Pests, diseases, and weeds and their management. 
Diseases, pests, and weeds (DPW) are important 
yield-reducing factors in terms of food production 
and economic impact, and pose significant simula-
tion challenges due to complex processes that occur 
over fine temporal but broad spatial scales. For each 
crop species, there is a portfolio of diseases, pests, 
and weeds, interacting over a range of time and space 
scales. Model improvements for DPWs include devel-
oping process-based models for important diseases 
and vectors, frameworks for coupling air-borne dis-
eases to crop models, gathering significantly more 
data on crop impacts, and enabling the evaluation of 
pest management strategies. 

Linkages to livestock production. Most smallholder 
farming in the world involves integrated crop-livestock 
systems that cannot be represented by crop modeling 
alone. Thus, next-generation cropping system models 
need to include key linkages to livestock. Livestock 
linkages to be incorporated include growth and pro-
ductivity models for grasslands and rangelands as 
well as the usual annual crops. Information from local 
experiments (such as the AgMIP sentinel sites) will be 
required to develop and test the grassland and range-
land models. These models will then be capable of 
deployment with livestock models, regional farm data, 
and inputs on management and climate. On the man-
agement side, the effects of animal labor need to be 
included as well. 

4.2.3  Scaling up from field scale to 
landscape scale 

Cropping system models need to be able to simulate 
easily a diverse set of farms rather than just one rep-
resentative farm, as has been common practice in the 
past. There are several approaches for scaling up, in-
cluding use of gridded models and development of 
simpler quasi-empirical models for landscape-scale 
analysis (Lobell and Burke 2010). Large-scale compu-

tation can allow for much more extensive use of grid-
ded models than in the past (Elliott, Kelly, et al. 2014). 
Soils and climate input datasets become important as 
simulation goes from field to landscape scale. There 
are several types of dynamic process gridded crop 
models: those developed from the site-based mod-
els such as DSSAT and APSIM; ecosystem-based 
models; and dynamic land-surface models. An exam-
ple of a more statistical model is the agroecological 
zone (AEZ) approach developed by IIASA and the FAO 
(Fischer et al. 2002). 

4.2.4.  Crop Model Interoperability and 
Improvement

A key question for the next generation of cropping sys-
tem models is the degree of interoperability. Historical-
ly, scientists (as individuals or groups) tended to have 
exposure to, and in-depth knowledge of, a single crop 
model (Thorburn et al. 2014). The Agricultural Mod-
el Intercomparison and Improvement Project (AgMIP) 
aims to increase efficiency of model improvement and 
application by sharing information between different 
models and encouraging the use of multiple models in 
impact assessment (Rosenzweig et al., 2013). Ideal-
ly, parameters from one crop model can be uploaded 
into databases and then downloaded, reformatted for 
use in another model. However, AgMIP has found that 
this sharing of parameter values between models is 
not necessarily straightforward. 

The AgMIP Program is bringing different modeling 
groups together to compare and thus improve their 
models. The aims are to develop a better understand-
ing of different crop models across the agricultural 
modeling community; improve both individual crop 
models and the entire group of models for a particular 
crop; and improve the efficiency and effectiveness of 
multi-model applications in agriculture. 

4.3 Soils and Precision Management

Integrated agricultural technologies, defined as the 
integration of improved genetics, agronomic input, 
information technology, sensors, and intelligent ma-
chinery, will play a pivotal role in agriculture in the 
years to come. These innovations will be driven by 
economic forces, by the need to produce more food 
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with limited land and water for the increasing pop-
ulation, and at the same time by the push to save 
resources to reduce the environmental impact asso-
ciated with food production. While these changes are 
occurring now in the commercial-scale industrialized 
agricultures of the world, many of these technologies 
have the capability to be adapted to conditions in 
other parts of the world. The cell phone now allows 
farmers in rural areas almost everywhere in the world 
to have low-cost information about prices, for exam-
ple. Similarly, it is likely that unmanned aerial vehicles 
will rapidly be adapted to conditions around the world 
and used to carry out activities such as monitoring 
crop growth and pest occurrence, and improve man-
agement decisions. In large-scale, capital-intensive 
agricultural systems, these technologies are rapidly 
leading to the automation of many production activ-
ities, particularly machinery operation and decisions 
about input application rates.  

The automation of agriculture began in the mid-nine-
ties, resulting in large amounts of data available to 
farmers and agribusiness companies. Farm machin-
ery and tools sold today are largely equipped with 
high precision global positioning system (GPS) driv-
en controllers, which allow all activity on the farm to 
be recorded, geo-referenced, and stored on remote 
computers: “in the cloud.” All modern tractors col-
lect data on a continuous basis and are equipped 
with wireless connectivity for data transmission. 
Harvesters record the yield at a particular location, 
planters can vary the plant spacing or type of seed 
by location, and sprayers can adjust quantity and 
type of fertilizer, fungicide or pesticide by location; 
all to a granularity of just a few square meters. Yield 
monitoring can now be linked to UAV imagery to 
produce a prescription map for the farmer to imple-
ment. These private data could also provide tremen-
dous benefit to the researcher community, should 
access be increased. 

Producers in the developed world now have historical 
crop yield data for their fields, at a few square meter 
resolution, for the last twenty years. Combined with 
advanced satellite-based imagery, high-resolution 
spectral and thermal data obtained from unmanned 
aerial vehicles (UAVs), and weather forecasts, grow-
ers have most of the critical inputs required to convert 

this “big data” into a proper actionable management 
plan that allows for the application of inputs to vary 
spatially within the same field. Despite these rapid ad-
vances in the sophistication and automation of farm 
equipment, a vital piece of the equation is still lack-
ing: the analysis of the vast amount of newly avail-
able data in order to provide the farmer with a map 
of what action to take where and when. Most variable 
rate application is currently managed by farmers, us-
ing rule-of-thumb and empirical approaches, and not 
by using a systems approach that accounts for the 
interaction of soil, crop, management, and weather. 
Thus much of the power of automation remains un-
exploited.

In order to realize the full potential of more sophisti-
cated equipment, new modeling systems for preci-
sion agriculture are needed. These systems could be 
based on comprehensive predictive crop yield mod-
els that combine publicly available data, such as soil 
type, weather, and others, along with location-spe-
cific data from farmers’ yield maps of their fields, to 
provide a prescriptive crop management plan at high 
spatial resolution, as in Figure 2. This type of system 
could deliver automated crop simulations, crop man-
agement strategy recommendations, process-based 
variable rate prescriptions, risk assessments, continu-
al in-season simulations, integration of in-season crop 
scouting UAVs flight information, pesticide/fungicide/
herbicide prescriptions and accurate harvest recom-
mendations via simple-to-use apps, websites, and/or 
smart phone texting.

The NextGen system will help farmers in two primary 
ways: better yields and higher profit margins. The an-
cillary benefits of improved compliance with environ-
mental mandates and better stewardship of natural 
resources are also important motivators. 

In this scoping study we have chosen purposefully to 
limit our scope to the farm and landscape scale. In-
creasingly, there will be demand for agricultural sys-
tems models to simulate and integrate the different 
components of the agricultural value chain (Fig. 3). 
Genetics, agronomic management (production input), 
weather, soil, information technology and machinery 
need to be linked in a system approach.
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4.4 Pests and Diseases for Crops and 
Livestock

As noted above, a major limitation of existing models 
is how they represent pests and diseases. We expand 
here upon some of the important areas that must be 
improved in NextGen models.

Improved statistical modeling of within-season pest 
and disease threats using automated data collec-
tion and cloud computing. It is now possible to col-
lect weather data continuously from ground-based 
sensors and to merge these data with medium-term 
weather forecasts and remote sensing data on crop 
growth and pest and disease damage. (Both growth 
and damage can be detected by satellite or drone by 
monitoring the crop’s spectral properties.) Then, using 
sophisticated statistical modeling done centrally, re-
al-time advice can be distributed to farmers through 
the web or through mobile phones enabling them to 
take precautionary actions. 

Understanding the consequences of climate change 
for weed, pest and disease threats. The IPCC has re-

viewed the existing evidence for how climate change 
may affect weeds, pests, and diseases. One issue 
with this evidence base is that there is a clear publica-
tion bias towards reports of increased threats – people 
often do not bother to write up no-effect results. There 
is a general recognition that we need good models 
to help tease out the different effects that changing 
weather will have simultaneously on both crops and 
the organisms that compete with or attack them. There 
has already been some work applying crop physi-
ology-type models to weeds, and developing more 
mechanistic models of the effect of temperature on in-
sect pests. There is an opportunity and need for more 
integrated models that include interactions between 
organisms, for example between weeds and crops, 
and between pests and the predators and parasites 
that attack them. A variety of different approaches 
are possible, and there is a need for an AGMIP-type 
approach to help the community decide how best to 
move forward.

Livestock disease. Highly contagious diseases of live-
stock present a major threat to agriculture, both in the 
developed and developing worlds. Diseases may be 

Fig. 3. Schematic representation of the agricultural sector value chain.
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chronic in livestock populations, emerge from wildlife 
reservoirs, or possibly be introduced deliberately by 
man as an act of bioterrorism. Models are required 
to help understand how a disease will spread, and to 
help policymakers design optimal interventions. These 
models must encompass not only the epidemiology of 
the disease but also how it is affected by agricultural 
practices and in particular the movement of livestock by 
farmers. There have been significant recent advances 
in this area, often building on work on human diseases. 
For example, it is now possible to take livestock move-
ment data and use it to parameterize an epidemiological 
model (Kobayashi, Carpenter, Dickey and Howitt 2007; 
Brooks-Pollock, Roberts, and Keeling 2014). There are 
the beginnings of a model comparison movement in 
human epidemiology; livestock disease epidemiology 
would also benefit from this approach.

Novel genetic control methods. There is intense current 
research activity into novel genetic methods of insect 
control. Most of this work, much funded by the Gates 
Foundation, is currently directed at the insect vectors 
of human diseases such as malaria, though the same 
methodology can be applied to insect pests of crops 
and of course the vectors of livestock diseases. The 
greatest advantage of these approaches is that they 
involve self-sustaining interventions that spread nat-
urally through a pest population, although because 
they are nearly all classified as genetically modified, 
the regulatory issues surrounding them are complex. 
Cutting-edge modeling work in this field involves joint 
population and genetic dynamic models, many of which 
are explicitly spatial. This topic is likely to be one of the 
most important and exciting areas of modeling as ap-
plied to agriculture over the next few decades.

4.5 Livestock Production 

There are a number of areas in which advances in live-
stock modeling could improve the information need-
ed to support the Use Cases identified in Box 1, for 
farm-level and landscape-scale decisions. 

For farm-level decision support:

More comprehensive livestock models covering 
a wide diversity of ruminant species, adequately 
pre-parameterized for most common situations and 

with default values for users to parameterize models 
to their conditions.

Summary models from comprehensive, dynamic mod-
els for on-farm support. This work includes summa-
ry models for intake, production and greenhouse gas 
emissions calculations. Some of these summary mod-
els could be developed as mobile phone technologies.

Development of extensive, standardized feed libraries 
linked to a GEO-WIKI for improving our mapping of 
feeds globally, but also to build a library that then can 
be used for deriving functions of feed quality for differ-
ent agroecological conditions. One way this could be 
accomplished would be to expand existing household 
data collection protocols to include suitable data for 
livestock. 

For regional investment and policy analysis:

Development of high resolution improved crop and 
livestock production systems typologies. These typol-
ogies could be derived from existing farm household, 
agro-ecology, farm, rangeland, population, markets 
and other spatial data. NextGen production systems 
mapping needs to include intensification, gender di-
mensions of family labor and control over assets and 
income, and operation size indicators.

Spatially explicit standardized feeds and productivity 
data. Ideally these data would be linked to crowd-
sourcing and large data rescue initiatives. 

Standardized linkages to global integrated assess-
ment and economic models of different types (from  
Globiom, IMPACT to GTAP and others).

Improved spatially explicit farm and regional data on 
production costs for different livestock technologies. 
This information is seldom available and is crucial for 
both regional and global analyses.

Livestock yield gap analysis. A much deeper and better 
quantified bio-spatial analysis of livestock yield gaps 
is needed to guide investments and to identify oppor-
tunities to use livestock as a vehicle for agricultural 
development, poverty reduction, and environmental 
protection.
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Livestock scenarios. Improved and consistent sto-
ry-lines are required for the livestock sector in all sce-
narios. These story-lines can be produced as part of 
global and regional “representative agricultural path-
ways” being developed by AgMIP and other research 
teams. (Currently, such story-lines exist only for the 
global “shared socio-economic pathways” used in 
climate impact assessments; see Havlik et al 2014; 
Herrero 2014.) 

4.6 Pastures and Rangelands

Pastures and rangelands are integral to all livestock 
production systems and are often closely integrated 
with crop production systems (e.g., pasture in rota-
tion). The biophysical components of these systems 
and driving data required to model them are largely 
similar to those of crop production systems (see first 
chapter), but management data tend to be sparsely 
available and representing continuity of plant popu-
lations is challenging. Advancing our ability to under-
stand how grasslands are managed – to understand, 
for example, what species are planted, what inputs 
(irrigation, fertilization, etc.) are provided, what grazing 
management (timing, intensity) is applied – is centrally 
important for improving our ability to model pasture 
and rangeland systems. At the same time, we have 
identified several features of next generation models 
necessary to improve the utility of models for pasture 
and rangeland systems, as we now discuss.

Planted pastures and native grazing lands both con-
tain a variety of species, some of which are more 
palatable, nutritious, grazing-resistant, or fire-resil-
ient than others. A more open, data-rich environment 
could facilitate evaluation of a variety of approaches 
for representing long-term dynamics, which could ad-
dress several important grassland management/as-
sessment issues. Managing grass swards (and desir-
able forb and species) to maintain desirable plants is 
a primary goal of grassland management, but one for 
which modeling tools have offered limited assistance. 
Models that represent vegetation dynamics are also 
desirable for understanding longer-term changes in 
species that can impact productive capacity, sensitiv-
ity to degradation, and carbon dynamics (particularly 
woody encroachment). Year-to-year variability is a key 
component for understanding potential utility and risk 

of relying on grassland forage resources. Next gener-
ation models that enhance our ability to forecast this 
risk would mark a substantial and meaningful advance.

The primary use of forage resources is for grazing 
animals, yet most grassland models are only loose-
ly coupled with grazers (livestock or wildlife). Better 
integration between grassland and livestock models 
– through grazing effects on grasslands, grazer distri-
butions across landscapes, forage demand/consump-
tion, livestock/wildlife movement, etc. – would enhance 
the ability of models to contribute to important emerg-
ing issues. For example, holistic grazing management, 
in which several aspects of management vary in re-
sponse to a variety of different cues from the land and 
expectations about future conditions, can be impos-
sible to evaluate with current modeling frameworks. 
A system that integrated user demand into the model 
development process could lead to implementation of 
new data-management feedback loops within models. 
Such interactions between users and producers of in-
formation could direct data collection (e.g., by drone 
or remote sensing) to facilitate model use. Models that 
better represent grazer-grassland interaction are also 
crucial for understanding how efficiently livestock use 
forage resources , what is necessary to sustain wildlife 
populations, and how much grassland output might be 
available for other uses (e.g., biofuels). 

4.7 Economics

Areas in which advances in economic modeling could 
improve the information needed to support the Use 
Cases identified in Box 1 also correspond to farm-level 
and regional decision support. 

4.7.1. Farm-level decision support

Advanced analytics need to be coupled with the data 
on management decisions that are becoming available 
through mobile technologies (e.g., tracking soil condi-
tions, seeding and fertilizer application rates, pesticide 
applications) and their results (e.g., crop growth, yield). 
An example of this analytical capability is the AgTools 
software developed by several university extension 
programs, which allows managers to calculate short-
term profitability and rates of return on long-term in-
vestments (www.agtools.org). Similar proprietary 
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software tools are being developed and used. These 
analytical tools could be linked with modules that 
track or predict environmental outcomes such as soil 
erosion and net greenhouse gas emissions (e.g., Ag-
Balance by BASF). Low-bandwidth versions of these 
tools need to be developed for use in areas where 
mobile phone technology is a limiting factor. Analytical 
tools need to be adapted to fit small-holder systems. 

Dynamic Estimation and Learning. The flood of data 
on physical land-use, water availability and use, and 
yields coming from mobile devices and remote sensing 
systems suggest that both the biophysical and behav-
ioral aspects of farm production at specific locations 
can be estimated by sequential learning processes. 
Recent advances in numerical approximation to dy-
namic estimators have reduced the dimensional and 
computational restrictions on their use. Two of several 
approaches that seem practical for remotely sensed 
data sets are Ensemble Kalman filters which use nu-
merical sampling approaches to avoid inverting large 
matrices, and Cross Entropy filters that use the Kull-
back formulation to reduce the Bayesian solution to  
a nonlinear  finite optimization problem. These recent 
advances in remote sensing are evident in analysis of 
the impact of the 2009 and 2014 droughts on Califor-
nia agriculture, which demonstrated the advantages of 
better data (Howitt, Medellin-Azuara, MacEwan, Lund, 
and Sumner 2014).

4.6.2  Regional investment and policy 
analysis

Modularization and input standardization. Models 
need to be incorporated into modules with standard-
ized inputs and outputs, including farm-level optimiza-
tion models, regional positive quadratic programming 
models, econometric land-use models, and region-
al impact assessment models. With this investment, 
these models could then be coupled more effectively 
for landscape-scale and population-level analysis of 
technology investments and other policy analysis.

Model linkages across scales. Methods and proto-
cols are required to link regional economic models 
(price-taking land use and impact assessment models) 
with market equilibrium models (e.g., regional partial 
or general equilibrium models). Some progress has 

been made on this front but much more development 
is needed (Antle, Stoorvogel and Valdivia 2014).   

Richer characterization of behavior. Generalization of 
behavioral assumptions and investigation of their ef-
fects on investment and policy analysis. Most eco-
nomic models make simple profit maximization as-
sumptions. There is a rich literature on risk modeling 
which could be incorporated. Recent advances in the 
expectations formation literature and the behavioral 
economics literature could be investigated for use in 
agricultural systems models. 

4.7 Environment and System Complexity

Current agricultural system models typically operate 
at the point/field scales (Fig. 4a) with an emphasis on 
vertical fluxes of energy, water, C, N and nutrients be-
tween the atmosphere, plant and soil root zone con-
tinuum. A holistic upscaling from the point source to 
the landscape scale (Fig. 4b) requires incorporation 
of several interacting, complex components, adding 
substantial complexity above and beyond the agri-
cultural system itself. Thus, a major consideration in 
environmental modeling is how to best capture es-
sential interactions while maintaining models that are 
feasible to implement with available data and compu-
tational resources. 

Figure 4 illustrates the various components linking 
point to landscape scales. A first element for the 
linkage from point to landscape is estimation of sur-
face and subsurface fluxes and ecological transitions 
along the lateral scale. Coupling with landscape mi-
croclimate models provides the vertical inputs used 
by the agricultural systems models, as well as gradi-
ents (precipitation, temperature, wind, vapor pressure 
deficit) along the landscape. Coupling with hydrologi-
cal models provides water flow paths like surface run-
off, vertical and lateral groundwater flow, and inter-
actions between vadose and groundwater zones and 
with adjacent surface water bodies (channels, rivers, 
lakes and coastal waters). Water quality models pro-
vides sediment and solute transport along the land-
scape controlled by water flows (Fig. 4b), and other 
effects like wind erosion. Integration and upscaling of 
landscapes into the watershed scale (Fig. 4c) requires 
3-dimensional coupling of the surface and subsur-
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face water, energy and mass transfers. At this scale, 
the groundwater aquifer system typically transcends 
the boundaries of the watershed and necessitates 
analysis at the regional scale to evaluate not only 
the impacts of the cropping and animal production 
systems on water quantity and quality, but also feed-
backs from the hydrological system in the agricultural 
system (shallow water table effects, drought or low 
water availability for irrigation). Further, mesoscale 
rainfall and evapotranspiration distribution models 
control the local surface and subsurface flow inten-
sities, pollution and abatement. At this scale, human 

effects through land-use changes as well as ecolog-
ical (vegetation, wildlife) dynamics and transitions on 
natural or protected lands (riparian zones, conserva-
tion areas, water resource management infrastructure 
etc.) are also an important and critical component to 
evaluate the overall sustainability of the agricultural 
system.

It is important to recognize that although current crop 
modeling upscaling approaches based on land use 
maps are an efficient first approximation, the next 
generation models should consider the lateral con-
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Fig 4. Lateral connections across scales with other environmental components needed in the next generation 
agrisystems models, from (a) point vertical scales typical of current agrisystem models, (b) lateral hillslope/
landscape surface and subsurface energy/water/C,N/nutrients transfers and ecological and human interactions 
(adapted from Kirby, 1976), to (c)  watershed and regional surface and subsurface connections and 
teleconnections.
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nections through the landscape and regional scales 
to evaluate the sustainability of the integrated system, 
including effects on water and soil resources quality 
and quantity and ecological value. 

The complexity resulting from the proposed integra-
tion at a landscape scale cannot be understated. In 
particular, additional emphasis is urgently needed on 
rational approaches to guide decision making through 
uncertainties surrounding the integrated agricultural 
system across all scales. As with all models (Raick et 
al. 2006; Kotz and Dorp 2004), those predicting agri-
cultural production changes and interactions with the 
coupled natural and human components produce un-
avoidable uncertainty around the predicted responses. 
These two issues – the need for coupled models that 
can answer the pertinent questions and the need for 
models that do so with sufficient certainty – are the key 
indicators of a model’s relevance. Model relevance is 
inextricably linked with model complexity. 

Although model complexity has advanced greatly in 
recent years and is a natural outcome of the proposed 
next generation integrated modeling, there has been 
little work to rigorously characterize the threshold of 
relevance in integrated and complex models. Formal-
ly assessing the relevance of the model in the face 
of increasing complexity would be valuable because 
there is growing unease among developers and users 
of complex models about the cumulative effects of 
various sources of uncertainty on model outputs (Mc-
Donald and Harbaugh 1983; Manson 2007; Cressie 
et al. 2009; Morris 1991). New approaches have been 
proposed recently to evaluate the uncertainty-com-
plexity-relevance modeling trilemma (Muller, Muñoz-
Carpena and Kiker 2011). 

Due to the complexity of the coupling process need-
ed in the upscaling and integration processes, inno-
vative approaches to simplify model outcomes to 
make them relevant in decision-making will be central 
to the next generation modeling efforts. New meth-
ods for evaluating uncertainty also can be used to 
devise model simplification strategies. For example, 
the identification of non-important processes for par-
ticular scenarios might lead to their removal or fixing 
(variance cutting) without affecting the overall results 

while reducing the overall output uncertainty.  The 
identification of the important model factors and the 
output response surfaces obtained from the analysis 
for particular scenarios can inform meta-modeling ef-
forts, were simplified functions or databases of the 
model outputs are used in place of the full model for 
decision analytics (Ratto et al. 2007; Villa-Vialaneixa, 
N. et al. 2011; Ruane et al. 2014).

4.8 Social Dimensions

As noted in section 3, a demand-driven approach is 
needed that begins with user-selected outcomes. Var-
ious outcomes are of interest in the context of sustain-
ability. Here we identify some key outcomes that need 
to be incorporated into modeling approaches. 

Income distribution and poverty. Most economic 
models provide an estimate of some components of 
income, but a complete characterization of income 
sources is needed to evaluate income distribution and 
poverty. Population-level outcomes are needed, not 
only means or averages.

Food and nutritional security. Existing models repre-
sent food production, but no existing model character-
izes all factors that affect food security (availability, ac-
cess, stability, utilization) at the household or regional 
levels. A major limitation is data on food consumption 
at the household and personal levels over time. New 
methods of collecting these data using mobile devic-
es are being developed. Additionally, it is necessary to 
express these data in other nutrient currencies beyond 
kilocalories, in order to explore nutritional diversity is-
sues, as well as sustainable diets (Müller et al. 2014).

Health. Earlier work on health impacts of pesticide 
use on farm workers and other occupational risks 
could be used to construct health impact modules 
(Antle and Pingali 1994). As elsewhere, big data (e.g., 
in this case, data from medical records or insurance 
claims) can be used to improve understanding of im-
pacts (Rzhetsky et al. 2014). 

Age, Gender and Health Status. Research on various 
aspects of gender impacts and outcomes has ad-
vanced, primarily in terms of relevant measures. With 
better data, analysis of gender impacts associated 
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with new technologies could be incorporated into ex-
isting farm household models and impact assessment 
models. A similar situation exists for analysis of im-
pacts by age and health status. 

Vulnerability and equity. The application of different 
farm improvement methods has explicit winners but 
also unintended ‘casualties’ and perverse incentives. 
From a development standpoint, it is essential to un-
derstand these dynamics to ensure that appropriate 
policies are developed to maintain equal opportunities 
for all sectors of society. For example, in many cases, 
rich farmers are the ones who adopt technologies ear-
ly. This factor could potentially disrupt power relation-
ships in markets, thus affecting poorer farmers. In this 
case it is essential to design alternative options and 
safety nets for poorer farmers to prevent widening the 
gap and making them more vulnerable. New models 
should improve our understanding of these processes, 
as we move from single farm models to multi-farm and 
regional models.

Understanding structural change and rural develop-
ment. When is rural development really about ag-
riculture? New models should help us to target this 
question more effectively, and to find out when inter-
ventions in the agricultural sector will not be efficient 
in lifting the livelihood status of farmers or a region. 
Identification of thresholds in farm sizes, farm-derived 
incomes and others, will be a necessary feature of 
some NextGen models. 

5. Towards Implementation

A long-term strategy for implementation of NextGen 
models could be to encourage developments on both 
the demand side and the supply side of the “market” 
for agricultural system models and knowledge prod-
ucts. On the demand side, we see a need for knowl-
edge product developments to be linked with im-
proved engagement of traditional end-users including 
both small-holders in the developing world and larg-
er-scale commercial agriculture, as well as new po-
tential end-users such as the crop insurance and rein-
surance industries. On the supply side, we see a role 
for private-public partnerships to facilitate data and 
collection and sharing, as well as collaborative model 
development and testing, combined with better com-

munication with the demand side to help guide the re-
searchers in the “pre-competitive space” towards the  
model developments that could be useful in the “com-
petitive space” of knowledge products. One such 
initiative has already been started through collabora-
tion between AgMIP and CIMSANS. (see President’s 
Climate Data Initiative, https://www.whitehouse.gov/
the-press-office/2014/07/29/fact-sheet-empower-
ing-america-s-agricultural-sector-and-strengthen-
ing-fo)

The concept of “competitive space” is typically con-
ceived as the development of knowledge products 
that are provided through commercial markets – i.e., 
as “private goods.” There is also an important public 
good aspect to these knowledge products. Some of 
these public goods are for public policy and invest-
ment decision making. In addition, it is important to 
consider the possibility that there could be obstacles, 
in the form of up-front fixed costs, to the development 
of decision support tools needed by small-holder 
farmers in the developing world, even though these 
tools could ultimately have substantial private and so-
cial value. Thus, there is arguably a role for some form 
of public or private charitable support for the develop-
ment of these tools. 

In order to facilitate the development of NextGen mod-
els, we see value in a multi-pronged approach. 

First, we see a need for better testing and inter-com-
parison of existing models, extending the model-in-
ter-comparison work already pioneered by AgMIP. 
In addition to the work begun to inter-compare and 
improve process-based crop models and global eco-
nomic models, there is a need for similar work with 
livestock models and farm-level and regional econom-
ic models. This type of work could be facilitated by the 
identification of some “test areas” where high-quality 
data are available for important types of agricultural 
systems. Using these test areas, various types mod-
el inter-comparisons and model testing and validation 
exercises could be carried out using standard evalua-
tions protocols. 

Second, in parallel with this testing, we see great need 
for investments in the design and testing of modular 
open-source model components and in the testing of 
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alternative model integration strategies. AgMIP has 
begun work in this area, and is encouraging participa-
tion across the modeling community. 

Third, as discussed further in the companion paper on 
Building an Open Web-Based Approach, there is a need 
for parallel development of ITC tools to support the 

software engineering, data input and output, and data 
visualization needed to make NextGen models useful to 
knowledge product developers and end-users. 
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Executive Summary

Agricultural modeling has long suffered from fragmentation in model implementation. Many models are developed, 
there is much redundancy, models are often poorly coupled, and it is often difficult to apply models to generate real 
solutions for the agricultural sector. To change this situation, we argue that an open, self-sustained, and commit-
ted community is required that co-develops agricultural models and associated data and tools as a common pool 
resource. Such a community can benefit from recent developments in information and communications technol-
ogy (ICT). In this paper, we examine how such developments can be leveraged to design and implement the next 
generation of data, models, and decision support tools for agricultural production systems. We review relevant 
technologies from the perspectives of maturity, expected development, and potential to benefit the agricultural 
modeling community. The technologies considered go beyond mere hardware and software to encompass meth-
ods for collaborative development and for involving stakeholders and users in development in a transdisciplinary 
manner. Our qualitative evaluation suggests that ICT can bring many relevant developments to the agricultural 
modeling community, such as: (1) development of a modular “plug-and-play” approach to model components, 
rather than stand-alone, larger, and increasingly complex models, that can be combined flexibly to represent the 
wide array of systems that are now or could be in use in the future; (2) a collaborative and open approach to soft-
ware development designed to meet end-user needs; (3) use of cloud and web-based computing technologies, to 
reduce costs of operating and delivering models and to broaden access to models; (4) better utilization of sensor 
and data collection methods, including remote sensing, crowdsourcing, and mobile technology; and (5) creation of 
new, and exploitation of existing, tools to generate, archive, access, analyze, visualize, and interpret model inputs 
and outputs, building on the tools that AgMIP and other organizations are now developing. New ways to collect, 
archive and supply experimental and observational data are needed to better manage the data side of modeling. 
Data standardization, archiving, and access methods are required that use web-based cloud architecture to sim-
plify and broaden access.
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1. Introduction 

Information and computer technology is changing 
at a rapid pace. Digital technologies allow people to 
connect across the globe at high speeds at any time. 
Even people in remote, developing regions increas-
ingly have the ability to connect online via telephone 
and internet providers. Satellite and drone capabilities 
allow us to obtain remotely sensed data in real-time 
regarding in-season crop growth and development, 
soil moisture, and other dynamic variables. High per-
formance computing allows us to process and make 
sense of big data (i.e. large quantities of structured and 
unstructured data that require special processing and 
visualization power) collected using new sensing tech-
nologies, and to scale and validate models in ways not 
previously possible. As a result, we expect more and 
higher-quality information to be available in support of 
daily decision-making. However, modeling and deci-
sion support systems in the agricultural sciences have 
not kept up with these advances in technology. Many 
of the frameworks used in these systems originated in 
the 1970s through 1990s, prior to the availability of ad-
vanced data collection, computing, storage, access, 
and processing technologies.

Undoubtedly, agricultural systems modeling could 
benefit from the advancements in ICT with big data, 
crowdsourcing, remote sensing, and high compu-
tational abilities, catching up with the relative slow 
developments over the last two decades. Against 
this background the practice of agricultural systems 
modeling could change and a next generation of tools 
could emerge, also with respect to ICT implementa-
tion. This would similarly hold then for the community 
developing, supporting and applying these tools. The 
vision for the next generation modeling community as 
described in the companion Paper 2 (Antle et al. 2014) 
from the modeling point of view, includes modelers 
and model developers working across disciplines, 
spatial scales and temporal scales, as well as software 
developers for the modeling framework, data process-
ing applications, and visualization tools. This paper 
approaches the envisioned next generation modeling 
community for agricultural systems from the ICT per-
spective. It describes relevant developments in ICT in 
recent years, and their links to agricultural applications 
or systems modeling, thereby qualitatively assessing 

the maturity, expected development, and potential to 
benefit the agricultural modeling community. The tech-
nologies considered go beyond mere hardware and 
software to encompass methods for collaborative de-
velopment and for involving stakeholders and users in 
development in a transdisciplinary manner. Central to 
our vision for the next generation modeling community 
to emerge and benefit from ICT developments are the 
principles that any development must (1) be open and 
transparent, so that all can contribute and understand 
the steps taken; (2) focus on community building as an 
integral part; and (3) include distributed, web-based 
components such as cloud computing and linked 
data. The recent developments in ICT will be assessed 
against these criteria, and also against five stylized use 
cases that have been formulated to support the vision 
for a next generation modeling community (see also 
the introductory overview by Antle et al. and accom-
panying papers by Jones et al. and Antle et al. 2015).

Background and theoretical 
considerations

A next generation of data-driven agricultural modeling 
and decision-making applications can help compa-
nies, governments and farmers in the food chain to 
make informed decisions. Two different concepts pro-
vide complementary perspectives on the value of data 
in this context.

The first perspective is based on the concept of a 
knowledge chain, as shown in Figure 1. This per-
spective postulates that data comprise a raw material 
and that when combined with description and qual-
ity attributes leads to information. Information can 
be linked to other information sources and placed in 
causal chains leading to knowledge. Ultimately, knowl-
edge serves as an input for decisions based on wis-
dom, which cannot be digitized and which occurs in 
the mind of the decision-maker. Information also flows 
in the opposite direction, as when integration of data 
from different sources, and comparison with models, 
suggests deficiencies in data, and when stakeholder 
requests identify needs for new data.

A second perspective focuses on application chains. 
Data-driven applications are realized along a chain of 
user needs and requirements, implementation in infor-
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mation systems (i.e., web sites, apps, text messag-
ing services, computer programs), operated within a 
technical infrastructure. This technical infrastructure 
includes methods for data assimilation and synthesis, 
of which models and model outputs form a part. These 
methods of data assimilation and combination use in 
their operations raw data collected by governments, 
private organizations, scientists, or networks, in addi-
tion to information sources such as satellite data re-
positories and model simulations. 

Data alone are not enough to meet the requirements 
of the NextGen agricultural modeling community, but 
must be engaged in an infrastructure consisting of 
both software and hardware (i.e., servers, computing 
capacity, and storage) as depicted in Figure 2. Based 

on the data in the infrastructure, applications targeted 
at end-users serve information and knowledge. Appli-
cation chains may be simple or complex, and may in-
clude, for example, data access, extraction, transfor-
mation (e.g., format, grid), and integration operations; 
one or multiple models; integration of output from dif-
ferent models; and model output transformation, anal-
ysis, and visualization steps. Design of the knowledge 
framework must consider not only the end-users, but 
the many people who are needed to contribute data, 
software and scientific expertise to the components 
and operation of the system. Figure 2 illustrates the 
full spectrum of users of next generation ICT infra-
structure including primary data collectors, database 
professionals, software developers, modelers and the 
end-users of knowledge and information. 
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Figure 1. Modeling system knowledge chain. Infrastructure includes technical, institutional, and organizational 
aspects (adapted from Lokers & Janssen 2014).
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Information and knowledge provided by next-genera-
tion applications can not only improve understanding 
but also change the balance of power by allowing end 
users to better understand both the biological systems 
that they manage through their farming practices and 
each other’s modes of operation. For example, farm-
ers in Africa can now receive text messages regarding 
current crop prices, seed and fertilizer locations, and 
crop insurance, thus allowing them to make informed 
decisions based on up-to-date information (Rojas-Ruiz 
and Diofasi 2014). 

The rapidly increasing digitization of society along with 
the increasing availability of internet and mobile tech-
nologies in agricultural communities provides massive 
opportunities for the hitherto underserved (Danes et 
al. 2014). In addition to ICT infrastructure, applications 

must be developed in a community of stakeholders 
including businesses, farmers, citizens, government, 
Non-Governmental Organizations (NGOs), and re-
search institutions.

Data assimilation techniques have developed signifi-
cantly in recent decades, and in some cases have 
reached maturity, thereby providing companies or 
policy-makers with relevant evidence for their deci-
sion-making. Data assimilation refers to the analysis 
of observations according to standard procedures and 
processes that integrate a mix of data from different 
sources as implemented in a computer. This requires 
specific investments and visionary analysts, research-
ers and problem-owners to develop new applications 
in such a way that usability increases. Examples in-
clude Climate Corp. in the U.S., recently acquired for 
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knowledge systems 
framework schematic. 
IT infrastructures are 
designed to serve the 
entire knowledge systems 
process, including 
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development, integration 
of model outputs, and 
delivery of products to end 
users.
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$1 billion by Monsanto, Monitoring Agricultural Re-
sourceS (JRC, www.mars.info), and the Famine Early 
Warning Systems Network (USAID, www.fews.net).

2.  Envisaged end users and user 
definition 

As noted in the introductory paper (Antle et al.), 
next-generation model development starts with an un-
derstanding of information required by various stake-
holders and then works back from those requirements 
to determine the models and data needed to deliver 
that information in the form that users want. ICT of-
fers various techniques for scoping user requirements, 
from more traditional methods of user requirements 
analysis to modern techniques of user-centered de-
sign, in which software is built in direct contact with 
the end-user in short iterations. In the latter approach, 
user needs and requirements guide and modify the 
development in each iteration (Cockburn 2006).

At the same time, opportunities to be in touch with 
end-users have become more numerous with the ad-
vent of mobile technology, social media, text messag-
ing, radio and TV shows, and apps designed for tab-
lets and mobile phones. At the moment there are still 
geographic areas where smallholder farmers lack the 
mobile networks for sharing data; however, access to 
SMS and voice message services is increasing rapidly 
and it is expected that end-users in rural areas in de-
veloping countries will skip the step of personal com-
puters and make direct use of mobile phones and pos-
sibly tablets (Danes et al. 2014). This trend suggests 
that there is a huge untapped potential to boost the 
amount of information provided to farmers and pro-
cessors in the chain, both because their needs are not 
yet defined and because services specifically focused 
on their use are not yet developed.

Numerous use cases can be developed to represent 
the stakeholders who define the outputs and charac-
teristics of next generation agricultural modeling. Box 
1 summarizes five use cases, chosen to represent a 
wide range of farming systems, beneficiaries, and re-
quirements for data and modeling components. Small-
holder farming systems are featured in use cases 1, 2 
and 3, as addressing the needs of these systems is 
considered to be essential to achieving food security in 

developing regions where smallholder farms account 
for most of the food production (Dixon et al. 2004). 
The end-users in these cases are (1) a farm exten-
sion professional evaluating the potential of improv-
ing local yields and nutrition using a combination of 
new cultivars, better field management, and improved 
water-harvesting methods; (2) a plant breeder evalu-
ating adoption of drought-resistant varieties of maize 
for a sustainable intensification application in Africa; 
and (3) an investment manager for an NGO wishing 
to evaluate the potential yield gains and environmen-
tal sustainability of a fertilizer supply project in Kenya. 
Use cases 4 and 5 consider agri-businesses in devel-
oped regions with end-users being (4) a farmer in the 
US who wants to improve his yields while minimizing 
inputs by using model-based decision support in his 
precision agricultural management and (5) an econom-
ic analyst in the sustainability group of a large food 
supply corporation, who wants to use NextGen mod-
els to improve sustainability in their supply chain.

These use cases have been described more fully in 
the introductory paper (Antle et al.). In the following 
sections of this paper we present overviews of the var-
ious facets of a next generation modeling community 
and the necessary ICT infrastructure to support the 
community with a focus on the capabilities of existing 
technologies, current trends and the suitability of each 
to meet the requirements of end users. 

In all five use cases, the solution requires integrated 
modeling capabilities using high quality, up-to-date 
data products. The end users are neither modelers nor 
data collectors and therefore solutions must focus on 
techniques that provide synthesized modeling results 
in formats that allow stakeholders to make informed 
decisions based on the current data and technologies. 
We return to these five use cases in Section 9, where we 
discuss the data, modeling components, and ICT in-
frastructure required by each. In each case, it is shown 
that the existing agricultural modeling frameworks 
are inadequate to provide rapid, reliable answers that 
the envisioned end users require for their livelihoods, 
health, and nutritional security. Components of an in-
tegrated system that could provide the needed data, 
information and knowledge to the specified end users 
are then put forward as straw-man proposals for each 
use case, to provide a road-map for establishing next 
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generation models, modelers and the associated ICT 
infrastructure.

3. Envisaged knowledge chain users 

Just as important as the end users in the NextGen 
agricultural modeling infrastructure are the data col-
lectors, software and model developers, database ex-
perts and user interaction specialists who are needed 
to contribute new capabilities to the envisaged mod-
eling framework and benefit from its capabilities. The 
successful implementation of the NextGen system 
must be designed in collaboration with the profes-
sional communities of these contributor groups. Ex-
isting model development teams will play a key role in 
defining the capabilities and bounds of the proposed 

NextGen modeling infrastructure. This definition can 
be done initially through a series of planning work-
shops, which can take advantage of existing agricul-
tural modeling communities such as AgMIP (Rosenz-
weig et al. 2013) and MACSUR (www.macsur.eu) and 
by engagement with projects such as FACE-IT (www.
faceit-portal.org), GeoShare (geoshareproject.org) and 
BIOMA (Donnatelli and Rizolli 2008) that are exploring 
new approaches to model development, integration, 
and workflow management. Continued model devel-
opment partnerships using collaborative design meth-
odologies are a necessary component of successful 
development infrastructure.

A long-term strategy of the NextGen modeling infra-
structure will be to develop a means of entraining new 

Box 1. Use Cases

The use cases were created to represent a range of plausible users of knowledge products that are linked 
to next generation models and data. The five use cases, which are designed according to four components 
indicated in Table 1, represent two types of farming systems:

Small-holders: small-scale semi-subsistence farms typical of Africa and much of the developing world, many 
of which produce a mix of subsistence crops, cash crops and some livestock;

Commercial crop farms: large-scale commercially-oriented crop farms typical of the industrialized countries 
including the United States.
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tural development 

projects that support 
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Supplying for 
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sustainability 

goals.

Farming System small-holder small-holder small-holder commercial corp commercial corp

Information User Farm advisor Agricultural  
research  

team/program

Analyst/adviser Management 
consultant

Corporate analyst

Beneficiaries Farm family Research institution/
farm population

NGO & clients Farm business Agri-business firm

Outcomes Improved livelihood 
(income,nutrition, 

food security)

Improved  
technology

Sustainable
technology

Income, soil  
conservation & water 

quality

Profit, risk man-
agement, sustain-
ability objectives

Use cases
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model developers and other knowledge system spe-
cialists from the user community, especially in devel-
oping regions of the world. Users and developers from 
emerging economies can bring unique perspectives 
that can guide the model development process to in-
clude key relevant components critical to their user 
communities. For example, a modeler in West Africa 
might emphasize the importance of soil phosphorus 
in yield limitations of that region – a modeling compo-
nent that has been lacking in many existing agricultur-
al production models that were generated in regions 
where phosphorus is not typically a limiting factor. In 
another example, the role of individual actors making 
ranges of decisions about farm management is rarely 
adequately represented in current models which gen-
erally assume uniform management across the study 
area. Participants with deep knowledge of the deci-
sion-making requirements of such actors, and the ICT 
technologies available to them (e.g., mobile phones) 
can contribute to components that meet the unique 
needs of these actors. 

Representation of the many factors used by human 
actors in decision-making will require a change in 
current modeling approaches. These examples un-
derscore the need for a flexible infrastructure allow-
ing compatible components to be developed inde-
pendently by various user communities and then 
combined in multiple, possibly unforeseen ways for 
agricultural model application, intercomparison, and 
evaluation. Existing modeling communities are adapt-
ing and new model development teams are emerging 
to contribute to this effort.

The development of the NextGen modeling infrastruc-
ture need not imply that existing models be discarded. 
On the contrary, while we certainly hope to spur devel-
opment of new model and data components, we also 
expect to “retrofit” existing complete models to allow 
enhanced capabilities of model linkages, connections 
with new data sources, and visualization and archiving 
of model outputs. The NextGen infrastructure should 
facilitate the comparison of new models and model 
components with widely used and trusted existing 
models. This parallel path of generating new models 
while maintaining existing models optimizes the ex-
tensive and irreplaceable knowledge that the current 
generation of modelers bring to the community. 

In addition to the requirements for model compo-
nent development, the NextGen framework requires 
a substantial commitment in the development of a 
software infrastructure to allow the data and model-
ing components to be linked through compatible in-
terfaces into cohesive workflows. Data products from 
the NextGen system will include both model outputs 
and data products synthesized from the model out-
puts or from raw data. Synthesis applications include 
tools for data discovery and visualization, dynamic 
mapping, and statistical analyses. It is anticipated 
that these types of infrastructure development proj-
ects will be realized through grant funding for collab-
orations between research organizations similar to 
research projects such as FACE-IT (www.faceit-por-
tal.org), GeoShare (geoshareproject.org) and iPlant 
(www.iplantcollaborative.org).

Finally, software development for access of NextGen 
data products and delivery of the final products to us-
ers is required. This top layer, represented in Figure 
2, is likely to include both proprietary products devel-
oped by private industry and non-proprietary prod-
ucts developed in the public sector. It is envisioned 
that with the proper infrastructure, enabling rapid data 
discovery and use, the delivery of agricultural data 
products may become the realm of many small and 
medium-sized, local enterprises that can profit from 
the opportunities provided by the data and products 
through the development of mobile and web service 
applications for use directly by farmers and NGOs.

4. Agricultural data 

The availability of data at the level of farming house-
holds and communities is low in the developing world 
compared to the developed world. We identify three 
main traditional methods of data collection:

1.  Governments collect data for monitoring purposes, 
management of information and administrative pro-
cedures. These data, which include national statis-
tics, monitoring data for subsidies and taxes, and 
data to monitor environmental performance, are 
generally uniform in format and are usually collect-
ed on a regularly scheduled basis for as long as they 
are relevant for policies.
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2.  Research projects collect data (e.g., field and 
household surveys, multi-dimensional panel data, 
soil sampling, measurements in laboratories) to 
meet specific project needs. These data are often 
incidental (i.e., collected on an irregular schedule) 
and not structured (i.e., non-uniform in format).

3.  Industries (including farmers and business-to-busi-
ness service operators) collect data for their own 
operations. They do not usually share data due to 
competitive concerns.

These sources of data have led to masses of data 
being potentially available for research; however, of-
ten these data are closed as they are only used for 
specific purposes by institutions or not well managed 
for future accessibility. These traditional sources are 
becoming more available as open data as evidenced 
by the G8 International Conference on Open Data for 
Agriculture (feedthefuture.gov/event/g8-internation-
al-conference-open-data-agriculture), several open 
data projects in Africa, the iPlant Collaborative for 
plant genetics data (www.iplantcollaborative.org), and 
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numerous other examples. The open data movement 
can help to increase the availability of data. Within 
this open data movement, governments, internation-
al organizations, research institutions, and businesses 
work to offer open access to their data sets to make 
re-use easier. This also requires infrastructure to serve 
the data, for example, data.gov, data.gov.uk, data.
overheid.nl or data.fao.org. Global Open Data for Ag-
ricultural and Nutrition (GODAN, www.godan.info) is a 
particularly relevant initiative for open data in the area 
of food security, as a multi-party discussion and advo-
cacy forum initiated by the U.S. and UK governments 
and supported by many different parties. In science, 
several specialized journals to publish data files are 
appearing, for example the Open Data Journal for 
Agricultural Research (www.odjar.org) that originated 
from AgMIP.

With the increased availability of data, a greater need 
is created to ensure interoperability of data by aligning 
both syntax (formats) and semantics (definitions). Im-
proved data interoperability creates new opportunities 
for all types of analysis and the development of new 
products. However, the necessary standardization has 
not yet been reached. There are technical standards 
that are maintained by International Organization for 
Standardization (ISO), W3C (World Wide Web Consor-
tium), and Open Geospatial Consortium (OGC), which, 
however, do not cover connection to the content lev-
el of the significance and usefulness of the data. To 
this end, there are all kinds of developments around 
semantics, which leads to better descriptions of con-
cepts (i.e., variables) in data sources. Major efforts for 
agricultural data harmonization include Agrovoc of 
FAO, CABI’s Thesaurus, the CGIAR crop ontology, and 
AgMIP data interoperability tools (Porter et al. 2014), 
as examples. However, this effort is still largely in its 
infancy, while mostly lacking in common vocabularies 
over different domains, as achieved in Janssen et al. 
(2009) (Fig. 3).

The emergence of mobile technology capabilities 
significantly supports the advancement of crowd-
sourcing (sometimes called citizen science or civic 
science). Mobile phones, GPS, and tablet devices act 
as sensors or instruments which directly place data 
online, with accurate location and timing information. 
These techniques are often seen as an opportunity 

for near-sensing, i.e. using sensor-equipped tools in 
the field for capturing observations, e.g., tempera-
ture measurements on the basis of data derived from 
a mobile device. There are also special tools such as 
leaf area index sensors and unmanned aerial vehi-
cles (UAV), which obtain more location-specific data. 
These crowdsourcing technologies offer the opportu-
nity to gather more data and at lower cost. In these 
cases, citizens help to collect data through voluntary 
efforts, for example biodiversity measurements, map-
ping, and early warning. Smallholders, citizens, and 
organizations can thus manage their own data as well 
as contribute to public data. This offers many possibil-
ities (especially as technology is still in its infancy), with 
some successful applications such as IIASA’s Geowiki 
(www.geo-wiki.org). Sometimes crowdsourcing is or-
ganized as public events, for example, air quality mea-
surements in the Netherlands on the same day at the 
same time (Zeegers 2012).

Earth observation through satellites now provides a 
continuous record since the early 1980s, forming a 
data source for time-series observations at any lo-
cation. More detailed satellite data are coming online 
through NASA and EU space programs. This leads to 
an increasing demand for satellite applications and 
analyses based on satellite information.

Making data available to models requires processing 
and transformation of the data to ensure quality, con-
sistency and compatibility. Data integration requires 
reconciliation of semantic properties of the data (i.e., 
the definitions of the variables in the data, their units, 
and the relationships between the variables) and the 
modeling components that use the data. The data may 
require statistical or geo-processing steps. Data-qual-
ity control requires manipulation to provide accurate 
and complete data needed by models, including syn-
thesizing data to fill gaps and deficiencies. Data prov-
enance, including data source and how data were 
cleaned, manipulated, linked and combined must be 
included in metadata (i.e., the data providing informa-
tion on other data such as ownership, units, resolution) 
and maintained at every step in the process. Similarly, 
data quality over time is important to the data analyst 
and must become part of the provenance metadata. It 
is important that a user know that older data may not 
be as accurate or relevant as more recent data due 
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to improvements in methods of data collection or ma-
nipulation. For most current integrated modeling ap-
proaches, these steps are done in a semi-automated 
way and on an ad hoc basis for each modeling project. 
Laniak et al. (2013) report that solutions to this issue 
are beginning to emerge including the GeoSciences 
Network (GEON, Ludäscher et al. 2003) and Data for 
Environmental Modeling (D4EM, Johnston et al. 2011), 
CUAHSI (Maidment et al. 2009). 

Data relevant for the end-user include both near-term 
and long-range decision support information including 
(1) fundamental information on farming techniques; (2) 
contextual information about the current weather and 
types of crops that work well in the local area; and 
(3) market information such as prices of inputs and 
commodities, demand information and transport and 
logistics information (Mittal et al. 2010 and Steinfield 
et al. 2013). The types of data required vary during the 
agricultural life-cycle from planning the crop season 
through marketing the products. Chapman and Slay-
maker (2002) further delineate information categories 
into Type A, representing information for long-term ca-
pacity building involving education, training and tech-
nical support; and Type B, representing information for 
short-term decision-making used to maximize the po-
tential of a particular asset at any one time, reduce vul-
nerability to shocks and respond to immediate needs. 
Type A information is the traditional focus of agricul-
tural extension. Type B information could include infor-
mation about markets and news relating to weather or 
rural services that require frequent updating. 

5.  Confidentiality, privacy and intellectual 
property issues 

A major motivation for the NextGen modeling frame-
work is to open up access to data and software that 
have previously been inaccessible for various reasons, 
in ways that facilitate discovery, composition, and ap-
plication by a wide variety of researchers and disci-
plines. However, while NextGen will certainly benefit 
from a growing interest in open data and open source 
software, confidentiality, privacy, and intellectual prop-
erty issues remain important. While interconnected, 
they are different issues. 

The first issue involves allowing access to data and 

software. This entails appropriate licensing schemes 
being endorsed to allow access to information. While 
reproducibility of science has always been advocated, 
the typical interpretation in natural sciences does not 
include allowing access to data sources and software. 
Many reasons are behind this, which vary in different 
parts of the world, most notably, lack of legislation that 
obliges public access to environmental data, limited 
credit that academics receive for releasing datasets 
or software, and a lack of sustainable funding mecha-
nisms for long-term collection and curation of import-
ant classes of data. To change the current practice, 
the NextGen community needs to move rapidly to the 
paradigm of sharing open data. 

There has been significant progress in other disci-
plines as evidenced by such open data collections 
as the iPlant Collaborative for genetics data (www.
iplantcollaborative.org) and the National Ecological 
Observatory Network (NEON, www.neoninc.org) for 
environmental science observations. One of the most 
important aspects is that open-access licenses should 
facilitate ease of access. Thus, simple licenses that 
give clear rights and obligations to the users need 
to be endorsed. In other disciplines, scientists have 
struggled to cope with complex licenses that ultimate-
ly are introduced only for enforcing certain wishes of 
the data owners, and introduce obstacles for the one 
who tries to reuse the dataset. This ends up being 
complex and cumbersome for the end-user. A simple 
licensing scheme, that consists of licenses that are 
compatible with each other (as a creative commons) 
should be considered as the way forward. An import-
ant activity of the NextGen community is to thoroughly 
examine its data access needs and pre-select a set of 
licenses for this end. Effective open access to infor-
mation needs to be seen as an enabling mechanism 
for the community. Many kinds of data that are critical 
to NextGen (for example weather records) are curat-
ed on behalf of many users by distinct communities 
of practice; in these situations, NextGen will need to 
have an influencing rather than a leading role in struc-
turing data-licensing arrangements.

Second are issues of privacy. In several cases, agricul-
tural data may come packaged with sensitive or con-
fidential information. Examples are nominal records, 
geographic location, economic information, agronom-
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ic practices, etc. that reveal a subject’s identity, loca-
tion or entrepreneurial knowledge. Such information 
can be protected by not disclosing it, but sometimes 
effective mechanisms for data anonymization or ob-
fuscation are needed to protect privacy (CAIDA 2010). 
There are also techniques for ensuring privacy preser-
vation during computations (e.g., see Drosatos et al. 
2014). The NextGen community needs to invest in pro-
tocols for protecting privacy and confidentiality.   

While open access is a fundamental pillar of the Next-
Gen community, we need to acknowledge that some 
resources (data or software) will always be proprietary 
for a range of reasons, and thus not shareable with 
others. For the NextGen platform to be useful, it re-
quires the endorsement of non-invasive licenses (i.e., 
ones that do not oblige users to replicate the same 
license), while it should support some kind of permit 
control (i.e., enforcing attribution, correct use) over 
access to data and software. Again, there is a lot of 
experience in other sectors on these approaches, and 
NextGen needs to adopt best licensing practices. 

6.  Visualizing and interpreting data and 
model outputs 

Tools to enable visualization of agricultural source 
data, model outputs and synthesized data prod-
ucts are needed to enhance the discovery and un-
derstanding of information for the entire spectrum 
of NextGen users, including data collectors, model 
developers, model users, integrative research, ap-
plication developers, and end-users. To make sense 
of large amounts of unfamiliar or complex data, hu-
mans need overviews, summaries, and the capability 
to identify patterns and discover emergent phenom-
ena, empirical models, and theories related to the 
data (Fekete 2013). One of the big challenges for the 
NextGen infrastructure is to include data visualization 
tools that support the exploration of and interaction 
with big data. 

Currently most visualization in agricultural systems 
modeling is organized in an ad-hoc way, by adding 
some visualization modules to models to produce 
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forecasting service of the 
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(copyright: EC-JRC, 
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graphs, tables and maps, or alternatively, by input-
ting and analyzing model outputs in other packag-
es, for example spreadsheet or statistical programs. 
In these types of packages the key visualizations 
as messages for scientific papers are prepared. In 
cases where models are applied on a more regular 
basis for a specific purpose, more elaborated visu-
alizations have been built, for example see Figure 
4 below for a visualization from the Monitoring Ag-
ricultural Resources (MARS) Unit of the European 
Union. 

6.1 Existing visualization packages

A whole industry has been built around the ability to 
easily visualize data, including interactive graphics 
driven by data that are collected, cleaned, and linked 
in real-time. There has been a shift away from batch-
based processing toward near-real-time or stream 
processing, with real-time query engines integrated, 
driven by the increasing desire to visualize data and 
see results as they occur. Visualization tools have been 
getting easier to use and often end-users are able to 
generate their own visualizations using these tools. 
There are numerous visualization packages available; 
a few of the more popular are: 

• Tableau (www.tableausoftware.com) – 
Visualization app / service for Windows

• Exhibit (www.simile-widgets.org/exhibit) – Web-
based library of visualization tools

• Many Eyes (www-958.ibm.com/software/
analytics/manyeyes) – Web-based visualization 
app service for browser

• D3.js (d3js.org) – JavaScript library of 
visualization tools

• InfoVis (philogb.github.io/jit) – JavaScript library 
of visualization tools

• Leaflet (leafletjs.com) – Library of GIS tools

• OpenLayers (openlayers.org) – Library of GIS/
mapping tools

6.2 Visualization for mobile technologies 

One of the biggest trends in visualization of data in-
volves applications for mobile devices. The applica-
tion of mobile technologies to agricultural data dis-
semination has enabled agricultural stakeholders and 
decision-makers to consume data wherever they are. 
The incorporation of mapping and geolocation capa-
bilities into smart device applications allows custom-
ized visualization applications to be sent to users via 
mobile devices. The ability to handle maps, drill down 
to information based on a specific region, or use data 
that is automatically refreshed according to a specific 
location can lead to a richer data visualization expe-
rience for the user. Mobile technology offers a differ-
ent user experience, as the screens are smaller and 
handled under different circumstances. This leads to 
mobile visualizations having to be very simple, yet at 
the same time very powerful for a user to come back 
to the application. Often it only works with very few 
data points communicated to the end-user with stron-
ger visuals on colors and readability.  

6.3 Visual analytics

Visual analytics is a branch of computer science that 
blends analytical algorithms with data management, 
visualization, and interactive visual interfaces. Visual 
analytics tools and techniques are used to synthesize 
information from massive, dynamic ambiguous and 
often conflicting data; to detect the expected and dis-
cover the unexpected; provide timely, defensible and 
understandable assessments; and to communicate 
the assessment effectively (Thomas & Cook 2005). Vi-
sual analytics consists of algorithms, representations, 
and big data management. Current state-of-the-art 
analytics and data management do not yet meet the 
requirements for big data visual analytics (Fekete 
2013), as they cannot yet process enough data rapidly 
and a suitable way to process them and help in the un-
derstanding. Existing software and hardware architec-
tures in visualization, analytics, and data management 
are not yet suited to integration into visual analytics 
applications, primarily because big data exploration 
is relatively new. Eventually, visual analytics could be-
come easier to implement and more widespread, but 
until then providing the mechanisms for exploration in 
databases and analysis systems will benefit any situ-
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ation in which users are willing to trade accuracy for 
time (Fekete 2013).

Data management and analysis tools have begun to 
converge through the use of multiple technologies, in-
cluding grids, cloud computing, and general-purpose 
graphics processing units. However, data discovery 
and exploration has not adequately been taken into 
account in these new infrastructures. New develop-
ments in both data management and analysis com-
putation will be required to incorporate visual analytic 
tools into these infrastructures (Fekete 2013 and Fe-
kete and Silva 2012). These include: (1) Databases will 
need to be designed to include visual structures within 
the database, in addition to storing data. These visu-
alization data structures are likely to become a stan-
dard functionality in database systems. (2) Standards 
for specifying multi-dimensional geometric schemas 
(e.g. specifying location and time) within databases 
are needed. (3) Databases must support geometry 
at multiple scales. (4) Extensive caching (i.e. loading 
chunks of data from the storing machine to visualiz-
ing machine) must be supported to maintaining the 
required computation and rendering speed for visual-
ization structures. And, (5) asynchronous operations 
are required to analyze large datasets while providing 
continuous feedback to the user. 

The traditional workflow process of loading a file, 
processing it and computing some analytical quan-
tities may not work well for exploration of large data-
sets. The analyst may need to try several process and 
methods in order to find relevant results. With big data, 
the loose coupling between visualization and analysis 
presents problems, as data transfer time exceeds the 
time of time used for analysis and visualization. High 
Performance Computers (HPCs) have been used to ac-
celerate analytics of big data, but for data exploration, 
the speed of data throughput may limit the usefulness. 
Implementations of existing algorithms such as hier-
archical clustering and principal component analysis 
computation have been used to pre-process data. New 
types of workflows are being developed for use in visu-
al analytics, including reactive workflows (e.g., EdiFlow, 
Manolescu et al. 2009), which specify that a set of oper-
ations occur each time the data change; and interactive 
workflows (e.g., VisTrails, Callahan et al. 2006), which 
interactively build and run a sequence including visu-

alizations. VisTrails tracks changes to the workflow so 
that a provenance for visual outputs is created.

7.  Modeling concepts and methods of 
model development

Building a model is not as straightforward as it sounds. 
There are many aspects to consider, especially if the 
model is moving beyond a single scientific discipline. 
Over the past decades there have been many advanc-
es in model development in components, model link-
ing in frameworks, and model interoperability.

7.1  Model creation, composition and 
reuse 

Modeling of agricultural systems is influenced simul-
taneously by the creators’ scientific viewpoints, in-
stitutional settings, and by differing views on the re-
lationship between models and software. Alternative 
perspectives in each of these domains emerged in the 
early days of the discipline and persist to this day. The 
physiologically-driven, ‘bottom-up’ scientific strate-
gy of orderly generalization that is discernable in the 
Wageningen group of crop models (van Ittersum et 
al. 2003) contrasts with a more ‘top-down’, ecosys-
tem-oriented perspective exemplified by the SPUR 
rangeland model (Wight and Skiles 1987). These dif-
ferent perspectives result in different choices about 
the detail with which biophysical processes are rep-
resented. Even when working from a similar scientific 
perspective, a scientist who constructs a model as a 
single individual (for example in a PhD dissertation, 
e.g., Noble 1975) will follow a different process of 
model specification and implementation compared to 
a large team working in a formally managed project 
(e.g., as in creating ELM, Innis 1978). Researchers who 
viewed a model as primarily a mathematical system 
tend to implement them within generic computational 
packages such as ACSL (Mitchell and Gauthier 1976), 
CSMP (the Continuous System Modelling Program or 
Simile (Muetzelfeldt and Massheder 2003), in which 
the model proper is a document. In contrast, research-
ers for whom models were engineering artifacts tend 
to implement them as stand-alone programs (e.g., Ce-
res-Maize, Ritchie et al. 1991), or as part of modeling 
frameworks. 
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7.2  Modularity, components and “plug-
and-play” approaches 

Over time, the “bottom-up” biophysical models have 
expanded their scope and the “top-down” models 
have included greater detail. One consequence has 
been a clear trend toward modularization of models, 
both in terms of concepts (Reynolds & Acock 1997) 
but also in the way they are coded. In a continuation 
of this trend, several modeling groups have adopted 
a modular approach to constructing particular simula-
tions as well as the models on which simulations are 
based, i.e., modularity in the configuration of simula-
tions (for example, Jones et al. 2003 and Keating et 
al. 2003; Donatelli, et al. 2014). The rationale for this 
approach to model development is threefold: 

  i to allow model users to configure simulations con-
taining alternative formulations of biophysical pro-
cesses, based on the need for a particular level of 
detail or else to compare alternative sub-models; 

 ii to permit specialists in particular scientific disci-
plines to take on custodianship of sub-models, 
while ensuring that the larger systems model re-
mains coherent; and 

iii to facilitate minimization and easier diagnosis of 
unexpected consequences when a sub-model is 
changed. 

In practice, encapsulation of sub-model logic in com-
ponents needs to be accompanied by transparency 
through adequate documentation if the confidence of 
model users is to be maintained; “black box” sub-mod-
els are less likely to be trusted. 

As the number of components has increased, it has 
become natural to assemble them together in order to 
address more complex problems than the original ones 
for which the models were developed. While compos-
ing large models this way seems both natural and triv-
ial, this is not the case. New limitations are introduced 
when a model is encoded in a programming language, 
and seldom are these assumptions represented in the 
model design or implementation (Athanasiadis and Vil-
la 2013). Models, as implemented in software, do not 

declare their dependencies or assumptions and leave 
the burden of integration to the modelers. This situa-
tion has been the driving force behind several efforts 
that have focused on the mechanics of integration, 
through computerized e-science tools for managing 
data and software to assist scientists with the techni-
cal linking of models to create scientific workflows, for 
example Galaxy (Goecks et al. 2010), Kepler (Altintas, 
2004), OpenMI (Gregersen et al. 2007), OMS (David et 
al. 2013), Swift (Wilde et al. 2011), and Taverna (Wol-
stencroft 2013). Integrated modeling so far has been 
focused on organizational issues (e.g., Laniak et al. 
2013) regarding stakeholder involvement, adaptive de-
cision-making, and community engagement, employ-
ing mostly training, peer review, and at the same time, 
reuse of existing models. While holistic thinking and 
interdisciplinary modeling thinking are still evolving, a 
methodological and conceptual challenge is how to 
translate them into modeling frameworks that pro-
duce robust and defensible results, are calibrated with 
observations, are transparent in methods and calcu-
lations, and are useful for answering scientific or poli-
cy questions (Janssen et al. 2011). Arguably, currently 
the science of integrated modeling is not advanced 
enough to produce the rigor of the results and meth-
ods required. 

7.3  Modeling frameworks, integration and 
reuse

A modeling framework is a set of software libraries, 
classes, and components, which can be assembled 
by a software developer to deliver a range of appli-
cations that use mathematical models to perform 
complex analysis and prognosis tasks (Rizzoli et al. 
2008). A modeling framework enables the “models” 
to be seen as a single, structured entity rather than 
a collection of disparate computations. In the case of 
agro-ecosystem modeling, there are several frame-
works that have been developed and used by differ-
ent research groups, such as ModCom (Hillyer et al. 
2003), the Common Modeling Protocol, (Moore et al. 
2007), and BIOMA (Donatelli & Rizzoli 2008). Modeling 
frameworks aim to be domain-independent; however, 
many of them originate from a certain discipline that 
drives several of their requirements. For example MMS 
(Leavesley 2002), OpenMI (Gregersen et al. 2007), and 
OMS (David et al. 2013) originate from the hydrolo-
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gy domain, and thus allow for component interaction 
over space at watershed scales. 

An important aspect of model integration is informa-
tion exchange/sharing. State-of-the-art agricultural 
modeling systems typically employ a blackboard solu-
tion, in which common data structures (either class-
es or components) are shared among models and 
each model is allowed to read and write values on the 
shared “blackboard”. The only commonly used con-
tract is that of using the same name for the variable 
on the shared “blackboard” (see Holzworth et al. 2010 
and Donatelli & Rizolli, 2008). A similar situation ap-
plies in the case of generic modeling frameworks such 
as OMS or OpenMI. NextGen models will need more 
sophisticated semantics for robust coupling of mod-
els. Villa et al. (2009) demonstrated that the use of for-
mal semantics can be the key to automatic integration 
of datasets, models, and analytical pipelines. Atha-
nasiadis and Villa (2013), previewed rich semantics for 
domain-specific programming languages, which could 
be considered for NextGen developments.

No consensus on how to implement component-level 
modularity in agro-ecosystem models can be expected 
in the near future. While the various frameworks show 
a strong family resemblance, the differences between 
them, which reflect different points of departure on the 
mathematics-to-engineering spectrum and also differ-
ent views on the trade-offs involved in decentralizing 
model development, mean that the technical barriers 
to linking them together are quite high. 

Lloyd et al. (2011) compared four modeling frame-
works1 for implementing the same model. They inves-
tigated modeling framework invasiveness (i.e., amount 
of changes required in model code to accommodate 
a framework), and observed (a) a five-fold variation 
in model size and (b) a three-fold variation in frame-
work-specific function usage compared to total code 

size. These findings imply that there is a large impact 
of the framework-specific requirements on model im-
plementation, and that lightweight frameworks have 
indeed a smaller footprint. Despite the advantages 
that modeling frameworks were supposed to deliv-
er in easing software development, they are mostly 
used within the groups that originally developed them, 
with very little reuse of models developed by other re-
searchers (Rizzoli et al. 2008). At the same time, mod-
eling software reuse is hindered by other issues such 
as model granularity. 

7.4 Model granularity

The goal of software for integrated modeling is to en-
sure soundness of results and to maximize model re-
use. This can be achieved by finding the right balance 
between the invasiveness of the modeling framework, 
as measured by the amount of code change to a model 
component required to include it in a framework, and 
the expected benefit of component reuse. A key factor 
in this balance is the granularity (i.e. break down of a 
bigger entity into the smaller parts of which it is com-
posed) of the model components. This choice of mod-
ule granularity involves setting the boundary between 
one model or sub-model and the next which can be a 
subjective and subtle process (Holzworth et al. 2010). 
In a well-designed modeling framework, each state 
variable and process must be represented in a single 
granular component class, but it is not always obvious 
where the boundaries between sub-models should be 
drawn. Consider, for example, detached plant residues 
on the soil surface: should they be regarded primarily 
as part of the organic matter cycle (as in DayCent and 
DSSAT), as part of the forage available to livestock (as 
in the GRAZPLAN model) or as a separate part of the 
system (as in APSIM). Also, if a modeling framework 
is to support a range of different process represen-
tations of differing complexity (for example sub-mod-
els for multi-species radiation interception), then the 
interfaces between the component classes must be 
carefully designed to be highly generic in the way they 
describe the relevant features of the system, and also 
to have unambiguous semantics. This design work, 
which is essentially a form of conceptual modeling, 
can improve the clarity of scientific understanding of 
ecosystems, but it is unavoidably time-consuming and 
has been considered an overhead by most modelers. 

1 The four frameworks were the Earth System 
Modeling Framework (ESMF), the Common 
Component Architecture (CCA), the Open Modeling 
Interface (OpenMI), and the Object Modeling System 
(OMS).
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State-of-the-art crop models tend to have their sub-
components tightly coupled (possibly for better per-
formance), which makes component substitution a 
laborious task that needs heavy code disaggregation 
and restructuring, while additional calibration may 
be needed. Holzworth et al. (2010) present a variety 
of model-reuse strategies that have been applied in 
APSIM, from components that were re-implement-
ed, to components that have been wrapped with 
APSIM-specific code, and to components that were 
linked via some protocol at a binary level (as black 
boxes). The variety of solutions was dependent on 
complexity, implications for other models, and amount 
of work needed.

7.5  Model linking and workflows

Linking of models and other computations togeth-
er into larger model chains or workflows is less well 
developed in the agricultural domain, than are the 
methods for linking together sub-models of the same 
kind into a single model. Reflecting on SEAMLESS, 
the most ambitious such effort to date, Janssen et al. 
(2011) concluded that integration of different types of 
models requires (1) conceptual integration, i.e., clear 
specification of how outputs from one model in a com-
putation should be used to correctly derive inputs to 
another model; (2) semantic integration, which is a 
necessary first step toward conceptual integration; 
and (3) technical integration in software. The most 
challenging aspect of integrating components across 
models is that of conceptual modeling. Formal ontolo-
gies provide a technology by which semantic integra-
tion can be achieved (and linked to datasets) (Atha-
nasiadis et al. 2006). 

Generic software tools for linking chains of models into 
larger computations (“workflows”) are now becoming 
readily available. For example, the bioinformatics com-
munity makes extensive use of Galaxy (Goecks et al. 
2010), a Web-based tool that provides an interface for 
composing, executing and storing workflows, togeth-
er with a repository of thousands of high-level com-
ponents that can be employed within workflows for 
tasks such as reading data, converting data between 
formats or visualizing outputs. To incorporate a model 
as a computation node, it is necessary to implement it 
in code that will run without user intervention – which 

may be a non-trivial task – and then to specify its in-
puts and outputs in a package-specific configuration 
file. Some applications of the Galaxy software package 
have commenced in the agricultural modeling domain. 
For example, the FACE-IT project (www.faceit-portal.
org) is applying it to problems in agricultural modeling 
of climate change impacts.

Experience from SEAMLESS (Janssen et al. 2011), 
AgMIP model intercomparisons (Asseng et al. 2013; 
Bassu et al. 2014), and pSIMS (Elliott et al. 2014) sug-
gests that even with these underpinning technologies, 
a considerable amount of software for converting and 
translating data between different units, formats, grids, 
and resolutions will need to be written. In some cases, 
translation tools will be required in order to integrate 
data sources and models that do not adhere to com-
munity standards. In other cases, translation tools will 
be required because different communities adhere to 
different standards.

7.6 Collaborative development

Most of the collaborative development methodologies 
have been developed by the open-source movement. 
Open-source is not a prerequisite for collaborative de-
velopment, however; many closed-source products 
follow similar methods for project management. The 
seminal work of Raymond (1999) introduced two ma-
jor project governance models, the Cathedral and the 
Bazaar, that still dominate software development in 
various ways. In the Cathedral model, code is shared 
only among the members of the development group, 
and decisions are taken through a strict hierarchy of 
roles. In contrast, the Bazaar model allows a large pool 
of developers to contribute with changes over the In-
ternet. In the development of agricultural models, both 
modes of work have observed. Most projects started 
with the Cathedral model, and few have changed to 
the Bazaar. 

Where a single organization or a small group of individ-
uals takes responsibility for specifying the design of a 
modeling system, then the simplest method of collab-
orative development is a Cathedral approach. The cus-
todian organization arranges with its collaborators for 
new model elements to be coded in accordance with 
its internal requirements (often by building a “wrapper” 
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if the new element is pre-existing), and a single code 
base is maintained by the custodian. Successful exam-
ples of such collaboration include the CENTURY and 
STICS models. The main benefit of the approach is that 
there is a clear definition of what constitutes a given 
model at a given time.

Cathedral approaches to collaboration are unlikely to 
be workable for many elements of a NextGen agricul-
tural modeling system; there will simply be too many 
peer stakeholders. The ‘Bazaar’ alternative approach 
to collaboration introduces the use of a common code 
repository with a version control system together with 
social technologies to manage modifications. For ex-
ample, the APSIM Initiative follows an ‘open-source, 
open-development’ philosophy of collaboration. The 
APSIM source code is managed in a single repository 
that is visible to the public. Any APSIM user can pro-
pose an improvement to any part of APSIM, but the 
collaboration model is not a pure Bazaar because such 
proposals are subjected to acceptance by a reference 
panel (Holzworth et al. in press; www.apsim.info). The 
DSSAT effort, which has long been a distributed, collab-
orative effort of scientists and engineers from multiple 
organizations, is currently moving towards a more open 
approach with its source code now hosted on GitHub.
com. Source code additions and modifications can be 
contributed, but are subject to rigorous testing and re-
view by a technical board (dssat.net). 

Collaborative approaches to model development are a 
consequence of open-source development and carry 
transaction costs (i.e. meetings, increased communica-
tion and increased effort in documentation). The costs to 
the modeling community of maintaining software quality 
assurance technologies and governance mechanisms 
are non-trivial; but the costs to a model developer of 
joining an open-source community (to translate existing 
code or adjust to a different conceptual framework) can 
also be significant. Most important is the cost of para-
digm shift. With respect to NextGen Models, creating 
an open-source project will not be as straightforward as 
open sourcing an existing individual model or starting 
a single open source software project from scratch. In 
merging different communities and scientific approach-
es, a medium-to-long-term investment by a core group 
of adopters is vital to achieve the critical mass of benefits 
that are required to make participation attractive.

7.7  Linking datasets into the model 
development process 

Generally speaking there are four pathways to link mod-
els to data: (1) Spatial databases of weather, soil, cli-
mate, and other model inputs; (2) Measured data from 
experimental sources or farm surveys; (3) Global and 
local datasets of forest cover and land use; and (4) Ap-
proaches based on estimating empirical relationships.

In the first case, spatial databases are used for analyses 
spanning larger spatial scales (for example in Use Case 
2), for which there will be a need to access geograph-
ic databases of climate, soil and vegetation attributes 
and of management systems in order to initialize model 
computations. Systematic methods for estimating local 
weather and primary soil attributes (e.g., Jeffrey et al. 
2001; Sanchez et al. 2009) and land use (e.g., Raman-
kutty et al. 2008) exist and are undergoing improvement; 
the main need for new R&D lies in documenting man-
agement practices. There is an opportunity to further 
improve the estimates of spatial biophysical and man-
agement information by inference from other data sets, 
for example using inverse modeling of soil moisture 
datasets to improve spatial estimates of plant-available 
soil water content or by inferring the rules that landhold-
ers follow to schedule sowing of crops from historical 
survey data and local weather.

The second case involves measured data, which can 
also be used to drive simulations of the historical tra-
jectory of agricultural systems for monitoring purposes. 
Weather data are routinely used in this way; indices of 
green area derived from remotely-sensed data are an-
other data source that is used in forestry (e.g., Running et 
al. 1989). Regardless of the kind of input data, the main 
technical need is to develop readily-accessible reposi-
tories that can be accessed seamlessly within modeling 
workflows. When forcing a dynamic model with mea-
sured data, there is an important distinction between 
running an emulation of a historical trajectory and car-
rying out simulations of hypothetical or future situations. 
To validly use measured data as driving variables in the 
latter two cases, it is necessary to assume that they can 
be regarded as realizations drawn from the distribution of 
possible future values of the driving variables. This sta-
tionarity assumption is routinely made for weather data, 
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except in climate change studies, but it unlikely to hold 
for measured soil water or leaf area index data once 
land management is varied (Wallach et al. 2012). 

The third case of land use and cover data is an essential 
linkage between the development of agricultural mod-
els and datasets and is used in evaluation of the pre-
dictive capacity of the former and in calibration of their 
parameters. At the global scale there are substantial 
databases of permanent forest plots (e.g. Lopez-Gon-
zalez et al. 2011), but experimental data for other land 
uses are widely scattered. The main needs for model 
evaluation purposes are to organize these data sets 
for other land uses, particularly grasslands and hor-
ticulture in subtropical and tropical environments; to 
collate data sets that allow evaluation of modeled 
soil water and nutrient dynamics over time-scales 
beyond single growing seasons and crops, including 
land use transitions; and to improve the discoverabili-
ty and accessibility of existing experimental data. The 
Long Term Ecological Research Network (www.lternet.
edu) is a good example of what is possible with ex-
isting technology. Over time, we should expect that 
automated estimation of key model parameters using 
standard data archives will become a standard fea-
ture of modeling frameworks, as will recalibration of 
models as new data become available. Techniques for 
automated calibration of complex models have been 
developed for the hydrologic modeling community 
(see, for example, Eckhardt et al. 2005 and Duan et 
al. 1992).

The fourth case, empirical relationships derived from 
datasets, will also find a place in NextGen workflows. 
Farm economic modeling and land use/land cover 
modeling place strong emphasis on data-driven ap-
proaches; there may well be scope to employ them 
in modeling agro-ecosystems, particularly in domains 
such as pathogen impacts or managers’ responses to 
price variations where process-driven representations 
are not yet well integrated. The use of data-based 
sub-models can be thought of as a limiting case of 
model calibration, where the model structure and pa-
rameters are inferred from the data. There is a need 
for ‘generic’ model components that can be used to 
couple such empirical relationships into larger models; 
at present management-rule languages are used in an 
ad hoc way to implement them (Moore et al. 2014). 

7.8  The way forward - requirements for 
the future

There is a real opportunity to realize the challenging 
aims of NextGen more efficiently through the use of ge-
neric workflow management software and a common 
ontology; i.e. a conceptualization of a system based 
on concepts and relationships between concepts (An-
toniou and Van Harmelen, 2004). For this opportunity 
to be grasped, there are several prerequisites. First, 
the agricultural modeling community needs rapid-
ly to reach consensus on which of many competing 
packages (Galaxy, Kepler, etc.) should be the work-
flow tool of choice. If this is not done early, and in 
a way that most current and future needs are taken 
into account, experience has shown that different R&D 
groups are likely to dissipate their effort over a range 
of platforms with limited interchangeability. Second, 
a common ontology needs to be selected or devel-
oped for the quantities that are input to, and output 
from models of agricultural systems and landscapes, 
so that when models are implemented in workflows 
the values transferred between them are clearly under-
stood. While the ontologies developed in SEAMLESS 
will be a useful starting point, further conceptual mod-
eling will be required. While an ontological framework 
may seem an overhead for many researchers, still 
there is an emergent need for standardization actions 
for both terminology and data formats (i.e., see Porter 
et al. in press). Third, it is likely to be efficient to de-
velop a suite of output-presentation components that 
are in the public domain, well-designed for agricultural 
problems, and suitable for use across many different 
NextGen applications. Fourth, clearly separating code 
that implements model equations from their user in-
terfaces will make constructing computational chains 
easier. 

At the same time, coding a model needs to become 
simpler. We believe that by providing appropriate do-
main-specific structures and functions as libraries, we 
can enable NextGen model implementations that are 
significantly smaller, in terms of lines of model-spe-
cific code, than today’s models. As programming and 
maintenance costs tend to scale with lines of code 
(Boehm 1987), such developments will have a consid-
erable positive impact.
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8.  Infrastructure and interfaces: State-of-
the-art of IT 

Ultimately, any end user needs to interact with models 
and tools in a stable and robust way. For stability and 
robustness of tools and models an infrastructure is re-
quired, while the point of access for the user is user 
interface, which can take many different forms.

8.1 Interfaces for end users

Much consumer and business software today is not in-
stalled on PCs but is instead delivered by cloud-host-
ed services accessed over the network from a Web 
browser, often running on a mobile phone or tablet. 
Intuitive Web 2.0 interfaces make user manuals largely 
a thing of the past. The result of these developments is 
a considerable reduction in cost, often an increase in 
usability, and above all a dramatic increase in the num-
ber of people who make use of advanced software. 
For example, 20 years ago, few people had any sort 
of mapping or navigation software on their computer; 
now everyone has access to Google and Apple Maps 
on their computers and phones, and many use those 
services regularly.

Steinfield and Wyche (2013) present a summary of 
mobile phone-based agricultural services current-
ly available, with a focus on developing countries. 
These applications were sorted into four categories: 
(1) farmer advisory and information services, which 
provide extension-type agricultural information to 
farmers (example: www.m-kilimo.com); (2) market 
information services, which provide information via 
text message on current market prices of crops upon 
request (examples: M-Farm, mfarm.co.ke; Esoko, 
www.esoko.com); (3) financial services, which allow 
people to make and receive payments over their 
phones (example: M-PESA, www.safaricom.co.ke); 
and (4) decision support services, which include a 
range of services for mobile devices to collect infor-
mation from farmers then provide prescriptive infor-
mation to support decision-making (example: iCow, 
icow.co.ke). Apps available to farmers in developed 
countries are even more numerous. These fall into the 
same general four categories outlined above, but in 
many cases include far richer data stores for weather, 

soils, chemical applications, pest and diseases, and 
precision farming applications. 

There are numerous examples of how applications for 
mobile devices and desktop computers are already 
helping farmers to gain information to improve their 
ability to generate farm income in sustainable ways. 
Many of these applications are being developed in the 
private sector for use directly by farmers. Social net-
work feedback from users often provides assurance 
that the apps are useful and reliable. 

The technology for delivering information through mo-
bile and other devices has rapidly developed in a short 
time. It is likely that when the appropriate knowledge 
and information products become available, private 
and public software developers will already have the 
appropriate tools to implement the required applica-
tions to serve those data products to stakeholders.

8.2  Data and model discovery

Use of big data, component-based models, synthe-
sized information products, and apps for delivering 
knowledge through mobile devices, as proposed 
components of the NextGen ICT infrastructure, can all 
be easily envisioned using technologies that exist to-
day. One of the grand challenges of the NextGen ICT 
framework will be to provide common protocols for 
making these numerous databases, models and soft-
ware applications discoverable and available to users 
and developers through web services and distributed 
modeling frameworks. By using common semantic 
and ontological properties in Web 3.0 interfaces, the 
data and modeling components can be made available 
for coherent use in a proposed NextGen platform. Web 
3.0, also called the Semantic Web, refers to a standard 
being developed by the World Wide Web Consortium 
(W3C) that allows data to be discovered, shared and 
reused across applications, enterprises and commu-
nity boundaries (www.w3c.org). Linked data refers to 
connections between the contents of datasets to build 
a “web of data”. This technology is relatively new and 
as yet unproven for practical use in the scientific and 
big data realms. Many claims about the potential of 
linked open data (LOD) using W3C protocols do not 
accurately portray the complexity of designing these 
systems. Tools for working with linked data are not 
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yet easy to use and few people have access to the 
technology and skills to publish linked datasets (Pow-
ell et al. 2012). However, despite the lack of maturity 
of this technology, it holds great promise for use in a 
distributed ICT modeling framework, provided that the 
Web 3.0 protocols continue to develop and coalesce 
around common standards and that tools are intro-
duced that allow more rapid development of custom-
ized and complementary ontologies.

Other elements of a distributed modeling framework, 
such as cloud and web-based computing, movement 
of big data across the web, and software-as-a-ser-
vice (SaaS) are already in wide use. Standards have 
been established for many aspects of cloud comput-
ing (e.g., Open Cloud Computing Interface and Cloud 
Data Management Interface). However, standardiza-
tion gaps still exist for many other areas as delineated 
by the National Institute of Standards and Technology 
(NIST, 2013). These standardization gaps include SaaS 
interfaces for data and metadata formats to support 
interoperability and portability and standards for re-
source description and discovery. The NIST report lists 
15 groups that are actively working on development of 
standards for all aspects of cloud-based computing.

9. Analysis of Use Cases

In this section, we view the components of a next gen-
eration modeling infrastructure through the lens of the 
five use cases. In each case, deficiencies in the current 
modeling systems are recognized and a straw man 
NextGen solution is proposed.

9.1 Use Case 1 - Farm Extension in Africa

9.1.1 Problem statement

Jan is working as a farm extension officer in an area 
in Southern Africa where many farms are very small, 
incomes are very low, and farmers typically grow 
maize and beans as staple crops for their family’s sub-
sistence and to sell for cash. Some households may 
have livestock and/or grow vegetables. The aim of the 
extension service is to help farmers achieve higher and 
more stable yields of maize and also to advise them on 
improving their nutrition so that they obtain sufficient 
protein and micronutrients for healthy families. Jan ob-

tains information on new varieties of maize and beans 
that are now available to farmers in the area. These 
new varieties are more drought and heat-tolerant, and 
the bean varieties are more resistant to a common fo-
liar disease. Jan also has information on how to im-
prove nutrient management of these crops using small 
doses of inorganic fertilizer along with animal manure 
and crop residues. He also has information on a new 
technique developed by the CGIAR to partially harvest 
rainfall to increase water availability to the field and 
vegetable crops.

9.1.2 Current deficiencies

Jan is not a modeler, but he can benefit from the out-
puts of agricultural production models and farm-scale 
economic models. In this case, the modeling system 
must be able to combine existing data about localized 
conditions (soils, weather, genetics, household eco-
nomics, local markets, etc.) with farm-scale models to 
predict the viability of using the new varieties. These 
data are often very difficult to access if they exist at 
all. In many areas, weather data are considered to be 
proprietary and are not distributed freely. Good quality, 
localized soil data suitable for crop production model-
ing are usually non-existent or available only at a scale 
that is not practical at a field level. Information about 
household demographics and economics is rare-
ly available except in cases where a research survey 
has been conducted recently in the area. In any case, 
these data may contain sensitive information, which 
should not be made publicly available until the data 
are anonymized. Pre-configured models appropriate 
to the smallholder systems of this region are need-
ed, including components for mixed livestock/crop-
ping systems driven by data relevant to management 
practices in common in the region (e.g., planting date 
“rules”, cropping densities, varieties cultivated, etc.). 

The current infrastructure would not allow an easy 
answer for Jan. Existing models can simulate such 
systems, but the required data collection and model 
configuration would require a considerable effort and 
collaboration with modelers and primary data collec-
tors. Studies such as this, using current technology, 
would typically be performed to give generic suggest-
ed management for a region, with results not tailored 
to individual farms. 
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9.1.3 Straw man proposal

Because farms vary in size, labor availability, 
soils, and other characteristics, Jan wants to 
use the NextGen tools to help tailor advice 
to each farm family that is practical, likely to 
be adopted, and provide the best outcome 
in terms of more stable production, higher in-
come, and better nutrition. Jan obtains infor-
mation from the farmer to input into his smart 
phone, which has NextGen apps that were de-
veloped for the farming systems of his region 

and that help him determine combinations of 
system components that might best fit specif-
ic farm situations. This software also provides 
print files for extension information sheets 
written in the local language that describe the 
components of crop and farming systems that 
are likely to succeed with the farm family. The 
following design-time narrative and Figure 5 
describe the components of the data, model-
ing and delivery infrastructure that could allow 
Jan to deliver the necessary information to the 
smallholder farmers that he serves.

Figure 5. Straw man proposal for Use Case 1: Farm extension in Africa
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1. Jan has used the NextGen apps previously for 
evaluating improvements to cropping system 
management and so he is already familiar with the 
user interfaces and options available. He uses the 
NextGen Farm Tradeoffs Evaluation Tool (FTET) 
for use in evaluating the efficacy of the new vari-
eties.

2. The improved varieties of maize and beans have 
been developed by scientists at the CGIAR cen-
ters, who work closely with the NextGen cultivar 
library and have used the NextGen parameter 
estimation tool to develop crop model parame-
ters for a suite of NextGen models for the new 
cultivars. These cultivar parameters are now 
stored in the cultivar library and are available for 
use in the NextGen suite of applications.

3. Jan obtains information from the farmer and inputs 
these data into the NextGen Farm Management 
App on his smartphone, which has an interface 
developed specifically for the farming systems of 
his region. The app will help him determine com-
binations of system components that might best 
fit specific farm situations and register these man-
agement systems within the Global Farming Sys-
tems Typology Database.

4. Soils and weather records specific to the farm 
locations in Jan’s region are already available in 
the NextGen database for use with the FTET.

5. The FTET is a workflow that was generated for 
evaluating tradeoffs between management deci-
sions and overall farm/household level profit and 
nutrition. Components of the tool include farm 
production using biophysical models, a nutritional 
analysis based on inputs and outputs to the farm, 
and prediction of household income under each 
scenario. Jan’s input data from each household 
and the proposed improved varieties can be add-
ed to the workflow using the FTET user interface.

6. Based on outputs from the FTET, Jan distributes 
and discusses extension information sheets 
written in the local language that describe the 
components of crop and farming systems that are 
likely to succeed with the farm family.

9.2  Use Case 2 - Developing and 
evaluating technologies for 
sustainable intensification

9.2.1 Problem statement

Debora is a plant breeder/geneticist at CIMMYT, the 
International Center for Maize and Wheat Improve-
ment, working on developing a drought- and heat-tol-
erant hybrid of maize for. She would like to be able to 
evaluate the potential adoption and impact of maize 
varieties with particular characteristics across the 
widely varying conditions in Africa where maize is an 
important crop. She realizes, however, that maize is 
only one part of the complex farming systems used 
by most farmers, which typically involve multiple crops 
and livestock. She would like to be able to evaluate the 
potential of new varieties in these complex systems, 
rather than evaluating maize by itself as had been typ-
ically done by most research programs. Moreover, she 
would like to know whether the new varieties meet 
goals for sustainable intensification, such as improv-
ing productivity not just in the short term, but taking 
longer-term impacts on soils, water, and greenhouse 
gases into account.

9.2.2 Current deficiencies

Rapid analysis of this type would require the use of 
a database of farming systems typologies that would 
contain information about the types, management 
regimens, and frequencies of occurrence of crop and 
livestock production systems in the region. A crop va-
riety library linked to both genetic markers and crop 
modeling parameters for multiple models would allow 
Debora to create model parameters using the genetic 
characteristics of the new varieties. Regionalized soil 
and weather databases, with data suitable to drive 
these models would be needed. Mixed cropping-sys-
tems models, integrated with livestock systems and 
household economic models would be required to 
generate predictions of production and income over 
a region or country. If Debora wants to estimate the 
uncertainty of the model predictions, she may choose 
to generate the production estimates with simulations 
by multiple models.
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Again, current infrastructures are inadequate to rapid-
ly and accurately address this use case. Gene-based 
modeling is in its infancy (White and Hoogenboom 
1996; Hoogenboom and White 2003; Messina et al. 
2006; Hammer et al. 2006), but is progressing rapidly. 
The modeling technology may be adequate already. 
However the farming systems topology database and 
cultivar libraries described in the use case do not cur-
rently exist. Existing soils and weather data suitable 
for regional analyses may be available, but are often 
not usable directly by crop models due to missing data 
and incompatible formats.

9.2.3 Straw man proposal

Working with a team of colleagues at her research in-
stitution, she uses the NextGen Technology Adoption 
and Impact Tool (TA&IT) for this purpose. This tool in-
tegrates the genetic characteristics of the maize vari-
eties with soil, weather, economic and social data rep-
resenting the farm populations where the new varieties 
could be used. Jan’s recent contributions to these da-
tabases have been used to update them seamless-
ly. The research team then simulates the potential for 
adoption and impacts of the new varieties, providing 
Debora with guidance for the kinds of genetic modifi-
cations that would be most valuable to farmers, and 
also provide an assessment of the long-term sustain-
ability of the systems.

Figure 5 and the following design-time narrative ex-
plore the possible components of a solution for Deb-
orah’s use case.

1. Debora sees herself as a “crop breeder, not a 
modeler” so she engages with a colleague (Edu-
ardo) who has previous experience with the Tech-
nology Adoption and Impact Tool (TA&IT). Like 
the models it uses, the TA&IT is more a collection 
of workflows and components than a single piece 
of software.

2. Eduardo scopes out the analysis requirements 
with Deborah. By using the query tool associat-
ed with the Global Farming Systems Typology 
(GFST) database, they confirm Eduardo’s initial 
judgment that a farming systems typology at an 
intermediate level of resolution will provide an 

appropriate balance between detail and compu-
tational effort. Consistent descriptions of approx-
imately 200 representative farming systems 
(RFSs) across sub-Saharan Africa that depend on 
maize production are selected, along with stored 
estimates of the populations they support

3. Fortunately for Debora & Eduardo, a previous proj-
ect on conservation farming practices has devel-
oped and recorded templates (instructions) for 
translating GFST descriptions into formats need-
ed by several biophysical models of smallholder 
farming systems. The biophysical model config-
urations include multiple crops, livestock, soil C, 
N & P cycling and representative diversity of soil 
types, plus responsive land use and tactical man-
agement systems that reflect households’ human 
capacity, and household consumption of product. 
They are parameterized from the GFST.

4. Eduardo adjusts the templates to place more 
emphasis on in-crop management of maize, and 
swaps in a livestock production model that will re-
spond to quality changes in corn residues fed to 
animals. He chooses the latter from a library of 
several livestock production models that share 
a common within-simulation interface.

5. Debora has seen the results of model intercom-
parisons and wants to be reasonably sure the 
analysis isn’t dependent on the choice of maize 
model. Eduardo therefore builds three versions of 
the mixed farming model, using 3 different maize 
growth models. To include the third maize model, 
he has to write a small OpenMI translator widget 
but, working from the example already available 
for maize model #1, this only takes a day or two. 
Eduardo adds this work to the ever-growing inter-
face repository.

6. Meanwhile, Debora and the crop physiologist in her 
team  have been describing the target traits that 
are to be evaluated in terms of their physiological 
function. Eduardo then arranges teleconferences 
with Fritz, Gemma, and Hortense, who are expert 
users/developers of each of the maize models. At 
these meetings the best ways to describe each trait 
in terms of parameters of each model are decided.

7. Standard translator Web services are built into 
the modeling workflow, so that simulations can 
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access weather and soils data for each RFS mod-
el from consistent global databases and convert 
them into formats that are useable by the models.

8. A set of preliminary runs are carried out using 
current maize genetics and are checked (using 
standardized reports) to ensure that inter-annual 
distributions of maize production, other crop and 
livestock production, cash and labor budgets are 
sensible. This step goes smoothly because these 
“base” models are being re-used.

9. Output from the biophysical models, along with 
RFS-specific context, are piped to cash and la-
bor budgeting modules, an assessment of 
changes in the adequacy of household diets and 
behavioral information about adoption, and 
a semi-quantitative tool that accounts for fac-
tors (cost, complexity, etc.) that will influence the 
adoption of new genotypes.

10. Eduardo advises Debora on the design of a sim-
ulation experiment that varies each target genetic 
trait against the existing genetic background and 
management system of each RFS. They also de-
cide to include systematic variations in fertilizer 
input intensity and the proportion of land de-
voted to maize, in case Genetics x Management 
x Environment (GxMxE) interactions are important.

11. Because the standard TA&IT “trait evaluation” 
workflow is being adapted to this analysis, Eduar-
do has a straightforward job of synthesis once the 
analysis is run. A collection of useful statistics 
and presentations has already been prepared 
(adoption rates, maps of where the net benefits are 
highest, differentials in effect on richer and poor-
er household types, income-risk-natural resource 
management tradeoffs) and the TA&IT-specific vi-
sualization tool allows him to show the results to 
Debora for her interpretation.

Figure 6. 
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9.3  Use Case 3 - Investing in agricultural 
development projects that support 
sustainable intensification

9.3.1. Problem statement

Stanley is an investment manager for a prominent 
foundation, and he needs to evaluate a project pro-
posal for small farms in Kenya that will increase the 
intensity of production by increasing fertilizer use per 
hectare on cash crops while maintaining the current 
sustainable nutrient balance between pasture grass-
es, crop residues and animal manure. Before authoriz-
ing a project that combines extension information and 
fertilizer subsidies, Stanley wants to evaluate whether 
the higher crop yields would induce a non-sustainable 
system once the initial period of fertilizer subsidies and 
extension was completed. 

9.3.2 Current deficiencies

In current agricultural systems modeling, many mod-
els (i.e., livestock, crop production, economics, soil, 
water) would need to be linked and different pieces 
of information extracted from them, and then com-
bined to produce relevant indicators, mostly done by 
the researcher or analyst personally, or even a com-
bination of researchers from different domains, with 
fragmented access to data. Data sources used, their 
aggregations, and their availability would be managed 
by each modeler for each model, which creates a con-
fused situation in that the same data are used for dif-
ferent models, but with different formats. A significant 
coordination effort is required to succeed at all, which 
focuses on the different modelers applying the mod-
els, getting all the relevant data, and ensuring some 
consistency and interchangeability across model ap-
plications.

9.3.3 Straw man proposal

Stanley implements the NextGen Project Assessor 
Tool (PAT) to access data and crop and livestock mod-
el components to assess the yield and labor impacts 
of increased yields. An economic assessment model 
is used to estimate if the current cropping balance 
will change under the new fertilizer program and if in-

creased fertilizer costs can be more than compensated 
by increase in cash crop yields in the long run. A long-
term farm level nutrient balance under increased in-
tensification will show whether the new system is sus-
tainable. Stanley would like to evaluate these results 
under a range of assumptions, and present these to 
local decision makers so that they share common ex-
pectations and uncertainties. For this he uses the Next 
Gen Project Assessor, which opens as a web page on 
his computer, and he sets up a new assessment, en-
ters data supplied with the project proposal, and links 
this to general data layers available in the tool. The 
Next Gen Project Assessor uses multiple Next Gen 
Models and the Global Farming Systems Typology as 
tools for impact assessments. Figure 7 illustrates the 
components of the proposed solution, which includes 
the steps listed below.

1. Ideally in the next generation modeling framework 
the necessary data would be available on a com-
mon platform in the NextGen Project Assessor Tool 
(PAT). Data (all formatted to a common data dic-
tionary/ontology) include traditional sources like 
household surveys, field experiments, regional 
statistics, but also crowd sources of recent esti-
mates of biomass growth and disease spread and 
remotely-sensed images of field distribution and 
water availability. 

2. Data assimilation through models could subse-
quently be executed with summary processes de-
scribed in the NextGen Project Assessor library, 
or by an export to more comprehensive modeling 
tools following standardized export formats. 

3. Ultimately, in the Next Gen Project Assessor, a 
library of tools can be used to present the best 
combination of integrated indicators, describing 
the likely impact of the measures proposed in the 
project in an appealing way for external stakehold-
ers building on state-of-the-art visualization soft-
ware. 

4. Here it is unlikely that Stanley does all these analy-
ses himself, but instead he invites an analyst to do 
this for him, once he has formulated his question 
in the start page of the Next Gen Project Assessor. 
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Crucial to success of the NextGen Project Assessor 
are: (1) ample availability of good quality data that 
can be used freely for analysis; (2) easy integration 
across domains of data and analysis tools without 
excess in details of any particular domain; and (3) 
flexibility in import and export of data according to 
standardized formats to facilitate sharing and visual-
ization. From an ICT point of view, this would require 

innovations in: (a) data discovery with a necessity 
to make data searchable and easily transformable, 
even if residing physically at many different loca-
tions across the globe; and (b) easy mash-up of data 
from different sources using standardized analysis 
tools in a web-based platform accessible to many 
different users with different roles with a strong pre-
sentation layer.
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Figure 7. Straw man proposal for Use Case 3: Investment in Agricultural Development 
to Support Sustainable Intensification
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9.4 Use Case 4 - Management support for 
precision agriculture 

9.4.1 Problem statement

Greg is a farmer in the US, with a large corn/soy-
bean-based farm and a high level of mechaniza-
tion fully equipped with auto-tracking system and 
high-resolution differential GPS. Greg has a histori-
cal archive with more than 15 years of data on crop 
yield spatial variation at five-square-meter resolu-
tion. His tractors are equipped with on-the-go sen-
sors for variable applications of seeding, fertilizer, 
pesticide, and herbicide. Greg consults with a pre-
cision agriculture consultant, Harold, who provides 
him with up-to-date management prescriptions, 
tailored to the current crop stage and soil varia-
tions in his fields. These strategic and tactical crop 
management recommendations include variable 
rate prescriptions for fertilizer/pesticide/herbicide 
application and accurate harvest recommendations 
that are automatically integrated in Greg’s Controller 
Area Network (CAN)-bus enabled tractor for variable 
rate application of inputs. 

9.4.2 Current deficiencies

Much of the information that Greg and Harold need 
to realize this use case is available with current 
technologies, including remote sensing through 
high-resolution satellites, airborne imagery and 
drones; farm equipment designed for precision ag-
riculture; and existing crop modeling and data anal-
ysis software. What is currently lacking is the ability 
to link remotely sensed data with a decision support 
system that allows a farmer to make informed de-
cisions regarding management required for specif-
ic locations in a field or farm, translated to the on-
farm GIS-equipped machinery. Crop models allow 
useful extrapolation and prediction for prescriptive 
management, but most current crop models lack 
the ability to handle spatially connected processes 
(i.e., water flow, weeds, and pest dynamics) within a 
field or landscape. Use of the models with real-time, 
remotely sensed data is not currently available to 
farmers or farm advisors.

9.4.3 Straw man proposal

Greg receives weekly updates on his smart-phone 
and tablet from Harold’s Precision Agriculture Com-
pany about the status of his crops. Information con-
tained in these updates is obtained from drone flights 
and crop model predictions using a combination of 
observed and forecasted weather. Harold’s analysis 
relies on the next generation models that are able to 
deliver strategic and tactical crop management rec-
ommendations, process-based variable-rate prescrip-
tions for fertilizer/pesticide/herbicide applications, and 
accurate recommendations on harvest management. 
The variable-rate prescription map created by Harold’s 
company is cloud-based and is automatically integrat-
ed in Greg’s CAN-bus enabled tractor for variable rate 
application of inputs. Greg’s farm technologies allow 
him to trace back all the activities performed in the 
field and the harvested product.

The following design-time narrative and Figure 8 de-
scribe the components of the data, modeling, and 
delivery infrastructure that could allow Greg to imple-
ment GIS-based precision farm management.

1. Harold’s Precision Agriculture (HPA) consulting 
business maintains high-quality, high-resolution 
soil attribute maps for Greg’s fields. These data 
are considered to be proprietary, as Harold and 
Greg have invested in the collection of the data 
specific to these fields. NextGen soil data harmo-
nization tools were used to prepare the data in a 
format that can be used by multiple crop models. 
Soils are tested annually at several locations in the 
field and the files are updated as newer or correct-
ed data become available and data are stored on 
a cloud-based server. 

2. HPA buys high-quality observed weather data 
from a service that also prepares ensembles of 
seasonal forecast weather data. These data are 
combined with rainfall data recorded in Greg’s 
fields. These cleaned and combined data are also 
provided in a harmonized format ready for use 
by crop models. HPA serves the observed weath-
er data on public servers as linked open data, 
which are then available for discovery and use by 
other NextGen models. The ensembles of weather 
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forecasts are proprietary, and although stored in 
the same formats, are not made available as open 
data.

3. HPA owns several drones, which are flown over 
Greg’s fields bi-weekly to generate precision maps 
of leaf area index, biomass and chlorophyll con-
tent, which can be converted into site-specific ni-
trogen uptake by crops. A history of these aerial 
field maps can be retrieved to generate time se-
ries for the crop growth at any point in the field.

4. Greg’s CAN-bus enabled tractor allows Greg and 
Harold to archive all precision management data 
for the variable rate application of inputs to Greg’s 

fields. HPA maintains proprietary software that 
converts these management data to crop mod-
el-ready formats.

5. HPA’s crop modeling staff have pre-configured 
the NextGen Precision Agricultural Manage-
ment Tool (PAM-Tool) to generate an ensemble of 
crop growth simulations for Greg’s fields using the 
detailed soil maps, observed weather data, en-
sembles of seasonal weather forecasts, cultivars 
planted and management history. A data assimi-
lation package is included in the crop model used 
for simulation so that estimations of in-season 
biomass and LAI can be improved using Bayesian 
filtering techniques. 
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Figure 8. Straw man proposal for Use case 4: Precision agriculture
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6. The PAM-Tool working on a high-performance 
cluster quickly identifies optimum irrigation 
scheduling; fertilizer, pesticide and herbicide ap-
plications; and harvesting schedules. These rec-
ommendations are sent via smartphone connec-
tion for review by Greg and Harold. If approved, 
the recommendations are sent to the tractor’s 
computer for implementation.

7. Greg’s use of the PAM-Tool relies heavily on his 
soil attribute maps. These are derived from his 
proprietary data using inference algorithms that 
were created by publically-funded research and 
are made freely available. As matter of enlightened 
self-interest and of citizenship, Greg agrees to a 
request to make his soil attribute data available 
(via a standard soils description Web service) for 
the quarterly re-estimation of the empirical param-
eters used by these algorithms.

9.5 Use Case 5 - Supplying food products 
that meet corporate sustainability goals 

9.5.1 Problem statement

Jennifer is an economic analyst with in a corporate 
sustainability group. This group has embarked on ef-
forts to make sustainability the core of their mission: 
marketing food while conserving resources. She is 
assessing the lifecycle of food products to find ways 
to conserve energy, save water, minimize waste, and 
reduce greenhouse gas emissions in an effort to 
make these products more sustainable from the farm 
to fork. Specifically she is looking at the potato chips 
division as a case, having in mind that the corpora-
tion set an ambitious reduction target for greenhouse 
gas (GHGs) emissions by 2020. She wants a moni-
toring and evaluation system, in which she can track 
the different sources of emissions, synthetically test 
interventions, and follow the year-to-year variability in 
the emissions.

9.5.2 Current deficiencies

Current modeling of supply chains mostly uses life cy-
cle analyses that have little connection to landscape 
or field level modeling. Innovations in modeling are re-
quired to bring new algorithms forward; that can also 

parse data near-real time along the supply chain and 
that can compute implications in nutritional content 
of the different food stuffs. Data from remote sens-
ing, climate scenarios and weather forecasts are not 
extensively used to predict supply chain implications 
using state of the art models. Also, the combination of 
data and information from private large corporations 
and public sources only occurs on the premises of the 
private corporation.

9.5.3 Straw man proposal

Figure 9 and the following design-time narrative pres-
ent a proposed solution for Use Case 5 that uses the 
NextGen Supply System Assessment Tool (SSAT). 
The SSAT is initiated and implemented by a consor-
tium of large agribusiness companies. In recognition 
of their common interest in the transparency of their 
corporate sustainability policies, the consortium place 
the SSAT code in a public software repository and in-
vite proposals for improvement to it

1. Using a Web service, Jennifer works with her anal-
ysis team to access the SSAT. This tool monitors 
and visualizes the GHG emissions in the supply 
chain at the different steps in the supply chain. To 
use the tool, Jennifer and her team first configure it 
with information for their chips supply chain with 
factory locations, approximate location of farmers 
delivering input for the chips, and transportation 
moves to and from the different locations in the 
supply chain. 

2. The tool offers real-time weather and histor-
ical climate conditions around the globe as 
standard information, together with exchange 
rates, trade flows, soils, population densities, 
and GDP. 

3. Jennifer discovers that most GHG emissions oc-
cur in crop production, so she sets out to identify 
strategies that will optimize the amount of fertilizer 
to be used at a particular location with the goal 
of increasing yield and reducing greenhouse gas 
emissions. 

4. Through a web service with YieldGap.org, she 
imports data on yield gaps for crucial crops in 
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the most promising production regions for her 
corporation, and estimates the room for im-
provement in yield, while at the same time get-
ting information on nitrogen application rates 
and irrigation techniques from the local supply 
chain contacts and the Global Farming Systems 
Typology. 

5. With information from remote sensing and sea-
sonal weather forecasts, that produce yield fore-
casts, she designs different management strate-
gies for the current season, with estimates of the 
expected yields and GHG emissions, also with 

timing for harvest to optimize transport move-
ments. 

6. For Jennifer, the NextGen Supply System Assess-
ment Tool also computes a total of GHG emis-
sions saved over the supply chain as an estimate. 
Proposals for management practices to be includ-
ed in supply contracts with farmers are presented 
and discussed with the local supply chain manag-
ers of the corporations; the resulting local knowl-
edge is incorporated as changes in the SSAT 
inputs data and new simulations are carried out 
before the final supply contracts are prepared.

Figure 9. Straw man proposal for Use case 5: Supplying Food Products that Meet Corporate Sustainability Goals
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10. Conclusion and recommendations for 
future development

10.1 Overall analysis of use cases

An overall analysis of the use cases demonstrates that 
these require a mix of recent innovations in technology 
and data (Table 1) to be realized. This overall analysis 
is necessarily qualitative, and dependent on the straw 
man proposals as these have been developed (which 
could have been done in many different ways). In gen-
eral there is an emphasis on data integration, in the 
broadest sense with data coming from different do-
mains, from different sources, and by combining pri-
vate and public data. All of the use cases thus require 
a more intensive use and combination of data, which 
so far has not frequently occurred. Big data, and with 
it visual analytics, become important in only one of the 
use cases. This could also be due to a lack of familiar-
ity with big data to foresee the possibilities. 

Most uses cases depend on the availability of good 
quality, openly available data, suitable for use in mod-
eling applications. Soil data, for example, are need-
ed that have relevance to localized agricultural fields, 
are complete, and are suitable for use in crop models. 
Similarly, good quality, openly available, up-to-date 
weather data are needed, which are complete and 
ready for use by models without the intervention of a 
data preparation specialist. These data requirements 
would appear to be the low-hanging fruit of any mod-
eling system, but they are often surprisingly difficult to 
obtain in today’s modeling world. The Global Soil Map 
(Grundy et al. 2104; globalsoilmap.org) will help relieve 
this constraint as it is completed.

With respect to data, semantics and linked data can be 
helpful to realize these use cases more easily and to 
benefit from resources across use cases, but it is never 
crucial. Standardized data protocols are needed that al-
low these data to be shared, discovered, combined with 
other data from different sources and used in multiple 
applications and analyses in various modeling domains. 
The use of Linked Open Data protocols will ultimately be 
a central component of the Next Gen framework. Given 
their current state of development, however, NextGen 
will have to evolve toward using these protocols.

In terms of users and usability, in most use cases the 
users are already quite clearly identified and mainly 
developments are required to more explicitly define 
what these users really need through state-of-the-art 
requirements analysis techniques. Each of the use 
cases formulates some general ideas and directions, 
but clearly much more information is required to elab-
orate the real applications.

Targeted visualization is needed to bring the mes-
sage across to the users as specific user interfaces 
and applications are proposed. Only Use Case 2 could 
probably work with already available visualization 
techniques. This use case requires highly variable vi-
sualizations in tables that generated and analyzed for 
each realization of the use case. The other use cases 
require much more standardized visualizations that 
need to be integrated into specific interfaces with a 
clear link to underlying data and assumptions. Mostly 
these visualizations are not available, and interestingly 
in some cases there are clear benefits seen from apps 
instead of desktop based solutions. 

Finally in terms of IT infrastructure and modeling, the 
individual models clearly need to move toward avail-
ability as stable, robust, granular and well-defined 
components instead of the current situation of large 
containers of analytical steps that are not flexibly 
steered through external programs. Models thus need 
to become advanced algorithms that can be robust-
ly called in a service-oriented set up. From an infra-
structure point, the availability of services for data and 
models (analytics) is as crucial for realizing the service 
oriented infrastructures underlying the applications. 

Model linking and frameworks play a role in some of 
the use cases, but not as much as flexible environ-
ment in which a user can play around with models 
(with the exception of Use Case 2). Instead, once a 
linking has been realized, this should be repetitive and 
stable in rather specific environment. Arguably, to pre-
pare such ‘stable linking’ of models a flexible modeling 
and workflow environment could provide some value. 
This framework that allows researchers to generate 
and share these workflows, including connections to 
multiple data sources, could be a key element of the 
NextGen modeling infrastructure.
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Characteristics Use Cases

1 2 3 4 5

Users and usability

User identification (1) ? ++ + + ++

Complexity (2) ++ +++ +++ ++ ++

User requirements (3) ++ ++ ++ +++ +++

Data and IPR

Open data + +++ +++ + +++

Private data +++ + +++ +++

Data integration ++ +++ +++ ++ +++

‘Novel’ data sources (i.e. social media, remote 
sensing, crowd sourcing)

+++ +++ +++

Big data ++ +

Linked data and semantics ++ ++ ++ ++

Visualization

Targeted visualization required +++ + +++ +++ +++

Visual Analytics required ++ ++

Apps +++ ++ +++ +

Model development

Model as components +++ +++ +++ +++ +++

Model linking + + ++ ++ ++

Flexible workflow frameworks ++ +++ ++ + ++

Collaborative development ++ ++ +++ ++ ++

IT infrastructure

Service-oriented architecture +++ ++ +++ +++ +++

Desktop based partly yes no no yes

Application (app) based yes no yes yes partly

Table 1. Overall analysis of the five NextGen Use cases as analyzed in this paper for their relevant IT and data aspects 
as discussed across sections of the paper. Scores are from ‘no score’; to + = element, but not crucial; to ++ = important 
innovation required; to +++ = crucial innovation required. ? = unknown importance. (1) User identification refers to 
activities in which it is relatively unsure who the user really is, and this needs to be further investigated; (2) complexity 
is a subjective assessment of the overall complexity of the use case as judged from the number of data sources, ICT 
innovations and visualization techniques; (3) user requirements refers to the extent to which additional user requirements 
analysis is needed to progress. Use cases are: Use case definitions: 1 = farm extension in Africa; 2 = developing 
technologies for sustainable intensification; 3 = investing in projects for sustainable intensification; 4 = management 
support for precision agriculture; 5 = supplying food products that meet corporate sustainability goals.
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10.2 Recommendations

Experience in other fields of science and industry sug-
gests that the key to success in both areas is to re-
duce impedance to adoption, so that the discovery, 
use, and contribution of data and software all become 
trivial tasks – or at least as close to trivial as may be 
possible, given the complexities involved in agricul-
tural systems. Experience also suggests that modern 
Web 2.0 and cloud technologies can play an important 
role in reducing such friction, by providing intuitive in-
terfaces and eliminating the need for users to install 
and maintain software. We propose the following prin-
ciples for the design of next generation agricultural 
framework modeling:

All elements of the system should be linked via intui-
tive, Web 2.0 interfaces, with associated REST APIs 
(Representational State Transfer Application Program-
ming Interface) for programmatic access. This will al-
low for self-documenting applications and interfaces 
and will facilitate navigation and integration of the var-
ious modeling and data components.

Software and data should be cloud-hosted to permit 
access by any authorized user, without the need to in-
stall local software. This does not necessarily require 
that access be free of charge: there may be a need 
for some payment mechanisms for resource-intensive 
activities in order to achieve sustainability. Ideally most 
data and modeling components would be free in both 
senses of the word, little to no cost and few to no re-
strictions on use, thus encouraging an active commu-
nity of application developers to provide value-added 
products to end users.

Software should be modular to facilitate adding new 
components and combining components to create 
new applications. Documentation of components will 
facilitate component consistency and coherence with 
respect to complexity, data requirements and uncer-
tainty.

The system should be populated with an initially 
compelling set of components and example work-
flows so that users can, for example, upload data and 
get immediate value in terms of analyses, comparisons 
with other similar data, and visualizations. Include a 

core set of utilities available for commonly-required 
tasks such as spatial and temporal data aggregation, 
format conversions, visualization of commonly used 
data and model products. 

Integrated user access control must be provided 
for all contributions, so that users can feel confident 
uploading private, confidential and restricted-access 
data and software.

The system should make it easy for users to upload 
and publish new data, software, and workflows. Fol-
lowing the principle of “publish then filter”, we want 
to encourage sharing of data and software, and use 
feedback mechanisms (such as ratings and post-pub-
lication review) to identify what is good – rather than 
interposing onerous curation processes. Mechanisms 
for citing specific contributions of data and software 
(e.g., DOIs) and for tracking accesses to contributions, 
in order to provide positive and quantitative feedback 
to contributors should be integrated. 

Common vocabularies and ontologies should allow 
interchange of data among and between disciplines. 
Development of these vocabularies has the important 
side effect of requiring that the disciplines work in a 
coordinated way, thus breaching the disciplinary silos 
that currently impede progress in integrated modeling. 
Use of linked data protocols will allow interpretation of 
data from multiple, distributed sources.

Openness, transparency, and collaboration should 
be encouraged. As much as possible, the data, mod-
els, model components, analytical tools, visualiza-
tion utilities, and model syntheses should be openly 
available for scrutiny, improvement, and re-use. Some 
components of the system will be proprietary, as pub-
lic-private partnerships are encouraged to flourish. 

Communities of users must be allowed to guide 
the development of the NextGen system. These 
communities are the most important element of the 
AgGen2 infrastructure for integrated agricultural mod-
eling. They include not only end users and stakehold-
ers, but data collectors, model developers, model us-
ers, and ICT professionals.

We believe that a next generation agricultural model-
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ing community that follows these principles is likely to 
gain a substantial following and encourage increased 
collaboration within and between communities and 

provide significantly enhanced tools to help deliver 
sustainable food production under changing climate 
conditions. 
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Next Generation Agricultural Systems Models  

Report on the Convening Held at the Bill & Melinda Gates Foundation August 12-14, 2014 

Prepared by John Antle and Stephanie Price 

September 15, 2014 

Introduction and Summary 

A scoping project on Next Generation Agricultural Systems Models was commissioned by the Foundation 
with the goal of designing a roadmap for investments that would improve decision support tools for 
evaluating farm-level sustainable intensification options for smallholder farmers in the developing world. 
This scoping project was coordinated by the Agricultural Model Inter-comparison and Improvement 
Project (AgMIP), and led by John Antle (Oregon State University).  

The scoping project began with the drafting of three background papers by an expert author team 
(provided to all participants of the workshop). A stakeholder workshop (this convening) was planned to 
obtain broader input from the various communities of science and practice that are now or potentially 
could be engaged in the pursuit of global food security and poverty reduction for the world’s smallholder 
farmers.  

This report summarizes the proceedings of the convening, including panel presentations and discussions. 
Background papers and PowerPoint presentations are available in the Convening Dropbox (access 
available on request).  The Appendix to this report contains the convening agenda, a list of participants, 
and summaries of the Use Cases developed by the expert author team and by the participants in the 
convening.  

Based on the discussions at the convening, and subsequent discussions among the scoping study leaders, 
participants at the convening and Foundation staff, the following next steps were identified: 

 There was general agreement to build on the momentum achieved by the scoping study and the 
convening, through follow-up meetings (perhaps to be held on-line) before the end of 2014. These 
meetings would plan preliminary NextGen activities that utilize selected Use Cases to further 
engage the relevant communities of science and practice, based on suggestions made during the 
convening. It was agreed that the Foundation staff would continue to play a coordination role for 
these meetings.    

 The background papers would be re-organized with an overall introduction to the scoping study 
and the Use Cases, followed by the three papers.  In addition to the background papers and 
roadmap document being prepared for the Foundation, the goal of the author team is to publish 
the papers in a peer-reviewed journal, and also to pursue publication of a high-impact “policy” 
paper summarizing the scoping study approach and findings.  

The leaders of AgMIP have also decided to provide a forum for further discussion and planning of activities 
in line with the NextGen vision at their annual meeting to be held February 28-30, 2015, at University of 
Florida. This meeting is open to all interested in attending.Convening Organization and Development 

The convening agenda was developed by Stan Wood and Kate Schneider (Gates Foundation) in 
collaboration with the John Antle and other AgMIP leaders. Peter Craufurd (International Maize and 
Wheat Improvement Center) served as facilitator. Participants were invited to represent private and 
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public sector interests, including agribusiness and the information and computer technology sector, and 
the broader science community. A cohort of early career scientists was also invited.  

Objectives, Agenda and Outcomes 

The background papers (see below) developed five Use Cases to motivate the review of the relevant 
science, and to discuss a vision for the Next Generation of models (referred to here as NextGen). The goal 
of the convening was to have a broader conversation around use cases, technical challenges, data, and 
how practitioner and user communities could be strengthened.  

The convening took place over two and a half days (see the attached agenda, some modifications made 
during the workshop are noted below). The first day was focused around developing and discussing Use 
Cases that can respond to the information demands set forth by the global community addressing 
agriculture and food security. The second day addressed technical opportunities and challenges, identified 
potential partnerships, and considered how a community could be fostered to advance this work. The 
third (half) day reviewed the draft papers and gathered the community’s input and feedback to guide 
their completion and to formulate a roadmap for advancing the development of NextGen models, data 
and information technology tools.  After authors presented and collected more feedback, attendees 
engaged in a creative networking session to brainstorm possible NextGen modelling applications. 

The expected outcomes of this convening were to: 

 Generate realistic Use Cases that meet actual information needs of stakeholders, a roadmap of 
possible projects or approaches, and partnerships that could implement them and address related 
technical challenges. 

 Begin to develop a multi-sectoral and inter-disciplinary community dedicated to applying their 
diverse skills to delivering data, analysis, and information that serves global agriculture, food 
security, and poverty reduction decision-making. 

 Solicit comments on the background papers, and suggestions for the roadmap towards NextGen.  

Background Papers 

The three background papers prepared before the convening (available in the convening dropbox):  

Paper 1. Next Generation Agricultural Systems Models, Data and Knowledge Products: State of 
Agricultural Systems Science  

Authors: J. W. Jones, John Antle, Bruno Basso, Ken Boote, Richard Conant, Ian Foster, Charles 
Godfray, Mario Herrero, Richard Howitt, Sander Jansen, Brian Keating, Rafa Munoz-Carpena, 
Cheryl Porter, Cynthia Rosenzweig, Tim Wheeler 

Paper 2. Next Generation Agricultural Systems Models, Data and Knowledge Products: New 
Approaches to Model Development, Improvement and Use 

Authors: J. Antle, B. Basso, R. Connant, C. Godfray, J. Jones, M. Herrero, R. Howitt, B. Keating, 
Rafael Munoz-Carpena, C. Rosenzweig, P. Tittonell, T. Wheeler 
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Paper 3. Next Generation Agricultural Systems Models, Data and Knowledge Products: Building 
an Open Web-Based Approach to Agricultural Data, System Modeling and Decision Support  

Authors: S. Janssen, C.H. Porter, A. Moore, I.N. Athanasiadis, I. Foster, J.W. Jones, J. Antle 

Day 1 

Opening Comments 

The convening opened with Peter Craufurd welcoming the attendees and motivating the group to do 
some out-of-the-box thinking. Discussants were asked to participate genuinely as individuals and to 
remain in the “pre-competitive” sphere. Participants were asked to keep focus on the main meeting 
objectives. 

Stan Wood introduced the Agricultural Development program at the Foundation. He explained the 
movement towards evidence-based decision making, with a focus on data for analytics. Stan outlined the 
main goals of meeting as trying to answer the following questions:  

 What are the questions that need to be addressed to improve livelihoods of smallholders? 
 How can we use our experience and insights, without the baggage of institutional and other 

vested interests, to think of analytical inputs that address challenges? 

John Antle further elaborated on the questions to be considered during the convening: 

 How to deal (sustainably) with food security?  
 How to accelerate productivity growth to meet food security needs this century?  
 How to move NextGen using the Use Cases from concept to implementation? 
 How to incorporate the science and user communities into this conversation? 

Expert Panel: “What do Next Generation Models need to deliver?” 

The opening panel spoke on what the “Next Generation” models need to deliver.  Panelists included Marc 
Sadler (World Bank), Hilary Parsons (Nestle), Rob Bertram (USAID), Lystra Antoine (DuPont/Pioneer), 
Wendy-Lin Bartels (University of Florida). 

The panelists focused on themes of flexibility, simplicity, transparency, integration of data and research 
disciplines, and engagement with the ultimate problems and beneficiaries addressed by NextGen models. 
Marc opened the panel by stressing that policy makers make hard decisions based on these models, but 
the models and assumptions that inform these individuals are often outdated or inappropriate for the 
question. Furthermore, there is a proliferation of models, interests and techniques that may overwhelm 
decision makers. Thus, in order to progress to the NextGen, we will need flexible and simple tools that 
communicate results that people understand. Hilary echoed Marc’s observations of model proliferation 
(through isolation), and explained Nestle’s approach to integrated modelling of driving concepts to 
achieve results. Hilary mentioned the example of the “Livewell” project in France that links food, nutrition 
and GHG emissions. Rob Bertram spoke on the gap between modelers and empiricists and the general 
lack of trust in models by decision makers. Lystra posed a number of challenges, notably how to measure 
success and link data providers with users. Wendy-Lin, the sole anthropologist in attendance, echoed 
Lystra’s point on identifying the actual beneficiaries of NextGen models. 
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Questions and comments focused on how to engage users and how to feasibly and sustainably use 
NextGen models. A recurring theme of “credibility” in models and applications was raised by Stan Wood, 
which led to some discussion on user engagement. Brian Keating, the moderator, concluded by posing the 
question: how do we develop useful tools instead of proliferating data? The panelists closed with their 
perspectives, which included making sure the right questions are being asked, and that channels of 
communication and local involvement need to be seriously planned. 

Developing NextGen Use Cases 

The NextGen Use Case development session began with an introduction to Use Case concepts and 
purposes by Sander Janssen. Sander’s presentation was followed by groups of attendees discussing and 
developing new Use Cases. The supplemental materials provided with this report summarize the Use 
Cases developed in this breakout section, along with the five Use Cases developed by the author team for 
the background papers.   

Following the breakout session, participants commented and voted on their two favorite Use Cases. 
Rather than selecting the “winning” use cases as described in the agenda, the Use Cases were grouped 
according to common themes (see below, breakout reports) and selected to be discussed in the 
subsequent breakouts. These breakouts were asked to address the following questions: 

o Who are the users? What are their decisions?  
o Who will benefit, and how?   
o What are the technical challenges involved? 
o What input data are needed, and at what temporal and spatial resolution? 
o How does the information need to be delivered? 
o What are the outstanding or new challenges that need to be addressed to implement this 

case (technical, partnerships, etc.)?  

After the breakouts, Rapporteurs presented the results of the discussions. PowerPoint presentations are 
available in a dropbox, a link to which is available by request.  Each presented Use Case is summarized 
below: 

Farm Extension Africa: Sander presented a flow chart of smallholder farmers and extension agents. The 
flow chart explored the different relationships between stakeholders, tools, and data. This Use Case 
considers the temporal scale of farming decisions: some support is needed pre-season, in season, and 
post-season. Examples of this include a farmer deciding what crop or variety to grow or when to apply a 
pesticide. 

Early Warning Systems: This Use Case considers the perspective of an extension agent in a remote district 
when dealing with a threat, such as pests or a drought. The system advises on things farmers can do to 
improve their odds given an adverse event will take place. Tools to advise include maps that display 
visually the spatial impact of a threat, community communications, and mobile technologies. A system 
such as this is reliant on quality monitoring data to forecast impacts and integrate feedback. A major 
challenge for this type of NextGen model is finding skilled individuals to make decisions based on the 
forecasts given and provide constructive feedback. 

Precision Agriculture: The precision agriculture case sets out a vision of increased profitability from better 
data inputs and integrated models. Implementing within season changes to adapt to environmental 
conditions (such as response to climate variability) can be facilitated by precision agriculture. 
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Government: The government Use Case works through investment and policy interventions, tradeoffs, 
intensification and sustainability in mixed smallholder and commercial farming systems. The case 
considers investment policy decisions based on objectives such as production, profit, and health. In the 
NextGen, this Use Case envisions decision support tools for regional governments modeling farm system 
up to watershed, regional, national scales. The group identified challenges in this Use Case as cloud 
infrastructure, feedback systems, data collection, transparency, and tradeoffs. 

Nutrition: This Use Case traces national governments and international agencies paths to achieve 
objectives of nutrition security and sustainability at global and national scales. The case considers factors 
such as climate change, food and agriculture, natural resource conservation, trade, and international 
agreements. Challenges identified in this Use Case include successful cross-disciplinary work and 
formation of public-private partnerships. 

Agribusiness, service providers, and financial services: This Use Case examines NextGen models’ use for 
financial service providers and agribusinesses serving farmers. The case considers how to target inputs 
(fertilizer, seeds, pesticides, equipment, labor, financial products, insurance, crop protection) and 
investments (market prices or selling advice, whether to sell forward). 

Day 2 

Expert Panel:  “What can the tech industry deliver to ag and food systems modeling today?  What needs 
to be developed for tomorrow? How do we better deliver information to users?”  

The panel spanned representatives from the tech industry, with each speaking on what the industry can 
provide to agriculture and food systems modeling today. Each panelist presented an issue they perceived 
existed in agriculture and food modeling today, a tool, and an example of how these tools have been 
applied to similar problems.  Panelists included Ashish Kapoor (Microsoft Research), Jason Cawley 
(Wolfram), Nancy Harvey (University of Chicago), and Dan Halprin (University of Washington).  

Panelists presented examples that included machine learning concepts, database solutions, open and 
sharable development environments, and the financial gains from using the tools at hand. The panelists 
also recognized the relationship between human and user intelligence and technological resources. Ashish 
opened the panel describing how machine learning and indirect or auxiliary data collection can address 
sparse data issues. He also mentioned additional concepts around value of information analysis, transfer 
and meta learning. Jason spoke on addressing issues with collaboration, process design and large sunk 
start-up costs. He outlined how Wolfram Alpha™ addresses user queries as well as employs flexible user 
interfaces with pre-loaded data. Nancy shared her experiences helping academics and providers of IP 
monetize and deploy intellectual property. She stated that, as researchers, we should try to not let “the 
perfect be the enemy of the good.”  She stressed that the modeling community should maximize the 
impact of what is currently available and take this technology to the last mile. Dan, of the eScience 
Institute at UW, described his software development process and shared how he uses the tools at his 
disposal efficiently. Particularly, Dan described how to build scalable tools and leverage human 
intelligence and computational knowledge to create self-sufficiency. 

Questions to the panel again focused on engaging users, but also included comments on seeing users and 
developers as an “eco-system” with multiple feedback channels. Modelling should account for these 
channels in development.  Some questions alluded to the relationship between problem identification 
and tools. Particularly, technology has changed how science is done, so what are the questions we want 
really to ask? Are the tools we want to use really appropriate? Are we designing new or better tools to 
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answer the same questions? In closing, the panel recommended that the community needed to really 
think about what the problem we are trying to solve is and do it. 

Breakouts on Technical and Institutional Opportunities and Challenges 

Based on the previous day’s discussions, breakouts were organized around opportunities and challenges 
identified by the participants. Themes were: 

 Big Data Collection & Analytics  
 Community Building  
 Data Access & Interoperability  
 Model Assessment & Credibility  
 Model Components & Connectivity  
 Model Improvement & Tool Development  
 Private Public Partnerships  
 User Engagement & Experience  

Breakout PowerPoint reports from the session Rapporteurs are available. Major points were: 

Big Data Collection & Analytics:  Using information from tools and models supported by big data will 
enhance resource efficiency (natural, financial, labor) in real time. We need to get incentives right for 
private and public sectors, while utilizing mobile technologies and sharing data openly. 

Community Building: The NextGen should take the Agmip structure (“lean centre and coalition of the 
willing”) and broaden engagement. There are several challenges associated with this, including lack of 
incentives, transaction costs, inconsistent reward metrics, and lack of transparency in model development 
(ex. standardized documentation). 

Data Access & Interoperability: The NextGen of models needs to address the entire data life cycle: data 
collection, manipulation, analysis and visualization, storage, archiving and sharing. The lifecycle needs to 
also incorporate government and donor initiatives and interventions as well as utilizing common 
standards. Appropriate incentives should be in place for users and providers of data. 

Model Assessment & Credibility: Model improvement should be done through focused research on 
identified limitations. A major challenge will be communicating results and sensitivities in a credible 
manner: this will require better visualization of results and increasing skills and understanding of users. 

Model Components & Connectivity: We should take notes from the software development industry’s 
practices to employ modularly structured systems: examples of tools and techniques include wrappers 
and data source compatibility. A major challenge will be whether the modeling community can agree on 
a common wrapping protocol that is able to perform the necessary functions. 

Model Improvement & Tool Development: The NextGen of models should be more generic and easily 
adaptable. They should also be expandable to include important soil, nutrition, water, and disease 
impacts. 

Private Public Partnerships: NextGen models should be based on a parsimonious approach that may or 
may not come from the private sector. These models should use real economic costs to produce rate of 
returns and other outputs, as well as serve as a precursor to business models. In five-years, the ideal is an 
operational set of models that are driven by actionable questions and benefit multiple stakeholders. 
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User Engagement & Experience: We need to present the same data in many ways, depending on the 
intended users and Use Case. To achieve this goal, we should use lessons from the technology industry, 
see Pasteur’s Quadrant. 

Expert Panel: “Opportunities for Innovation in Open Environments”  

The final panel on opportunities for innovation in open environments provided a diverse array of 
perspectives. Panelists included Jamie Kinney (Amazon), Liz Carolan (Open Data Institute), Dave Gustafson 
(ILSI Research Foundation), Caroline Figueres (IICD), and Scott Malcolm (USDA).  

Perspectives spanned cutting edge tech development to other more traditional development 
practitioners and modelers. The panel focused on the themes of partnerships, understanding and enabling 
data use ecosystems, and bringing accountability and exploration to the fore.  Dave opened the panel 
speaking on sustainable food and nutrition security and stressed the importance of partnerships with 
scientists from private, academic, and government sectors. Liz shared her unique experiences working for 
the Open Data Institute. The ODI focuses on incubating startups using open data as well as supporting 
governmental open data initiatives in developing countries. Liz explained how supporting open data is 
about enabling an ecosystem of users to change their culture, management systems, and institutions’ way 
of doing business. Scott’s position at the ERS in the USDA enabled him to share some thoughts on adoption 
of technologies (and timing) and thinking critically about data collection. Jamie spoke on his experiences 
at Amazon collaborating with the public sector to develop resources that enable users to focus on science 
instead of infrastructure. Jamie also spoke on the benefits of open innovation for accountability and 
exploration. Caroline shared her wide array of development experiences and the importance of quality 
data, as well as the importance of considering different perspectives and motivations of beneficiaries. 

Questions and comments from the audience focused on how to deploy transparency while preserving the 
quality and security of data and methods. One question posed wondered how we can we get to the point 
where users can replicate results from models developed by experts. This brought up the need for proper 
documentation, but also understanding that data with privacy protections (that is, not completely open) 
will need to be handled before dissemination. 

Day 3 

Background Paper Summaries and Reflections of Lead Authors 

The first session of Day 3 had brief summaries of the background papers and reflections by the lead 
authors based on the discussions from the previous two days. These presentation PowerPoints are 
available in the Convening Dropbox.  

Key reflections from the presentations: 

Paper 1:  

• Lack of trust, credibility of models  
• Cloud, mobile phone, apps – opportunities! 
• Need to take global science and make it relevant locally (major variability across the landscape) 
• Tradeoffs – need to be able to address in terms familiar to stakeholders 
• Communication is critical, particularly visualization 
• Need to identify and use best practices 
• Community is important 
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• Public-private partnerships 
• Don’t let the “perfect” be the enemy of the “good” 
• Open source is powerful and should be embraced 

Paper 2:  

• Validated Use Case approach and vision 
• NextGen model design: insights from tech and user community: we have much to learn 

from them: need collaboration! 
• Potential Advances in Model Components: our job 
• Evaluating Model Performance for Validation and Improvement 

• Usability and credibility both important 
• What it means for scientists and end users to build and maintain credibility 

• Towards Implementation 
• Identify critical problems with well-defined needs: proof of concept for the potential to 

accelerate innovation 
• Build on and improve existing models, taking advantage of ITC collaborations, linkages to 

users and “competitive space” 
Paper 3:  

• Multiple open data standards are emerging (OADA, AgGateway, cropontology.org, AgMIP, ICASA, 
GODAN, LOD) 

• Mobile technologies needed for both gathering and delivering data 
• Data quality and validation (Ground-truthing, hind casting) 
• Modularity in model components, data components 
• Standard workflows for farming system typologies 
• Metrics of credibility: End user feedback, reference data sets, reproducibility of results - 

provenance 
• Collaboration with tech companies: tool development, modern software techniques, and self-

learning algorithms (self-calibrating models). 
• Community needed for transition to NextGen  

– Standards and protocols 
– Open source software 
– Open data  
– Incentives for compliance 

• Costs of transition and development of commonalities (not always project-related) 
• Need to design a system which will maximize openness and accessibility 

– Minimize elite capture of data  and models 
– Preferential options (nudges) for accessibility 
– Create incentives for open source and open data 

• Publication and citation 
• Government and corporate policy 
• Community expectation 
• Donor requirements 

The following discussion covered a wide variety of topics, but the most pertinent questions and comments 
are as follows: 

• When does the next generation start? What is the road map and how to get there? 
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• How do you integrate economic and biophysical models, but continue to add people and 
landscape structure? Where do forest, bio-diversity, and wildlife characteristics fit in? 

• How can we actually get good models in the wild: the private sector is looking for models and 
research to commercialize and deploy. 

• Models will need to adapt to specific needs. Thus we will need to integrate models, users, and 
tools. So, how does the NextGen support collaboration between users and model developers? 

• It is important to measure accuracy in NextGen models, but we also need to measure impacts on 
the real outcomes considered. 

• Pre-competitive space vs competitive: what about vested interests? How to be careful about 
agenda setting and defining these mechanisms? 

• Need to include more space for SMEs, as well as include the potential for businesses that do not 
exist yet. The NextGen is about building a domestic eco-system that keeps the feedback loop alive: 
the conception of private sector should include space for businesses that do not exist yet. 

Breakouts for Creative Networking 

In order to leverage the unique mix of individuals and common understanding developed over the course 
of the convening, a creative networking session was added to the agenda. During this session attendees 
informally shared how they could collaborate and take the next steps towards NextGen modelling in their 
own fields. Several participants shared their visions for how NextGen models could be applied to their 
work.  One spoke on monitoring and data standards, particularly integrating ecological, pest, and diseases 
so that techniques and tools do not evolve in parallel with NextGen initiatives. Another shared her data 
collection experiences, and stressed the importance of data collection, harmonization and curation in an 
efficient fashion. The comments focused on enhancing the ability to model farming systems while 
recognizing there are boundaries on a farm, people, livestock, crops, climate, and land. The challenge is 
to get all of these aspects communicating with each other. In terms of steps, there needs to be a “bare 
bones” decision support system that is a pre-cursor to the NextGen which incorporates heterogeneity and 
“what-if” analysis. Furthermore, the information provided needs to be relevant at the farm level, which 
could mean using a crowdsourcing mechanism for local knowledge. There is no single application that is 
an answer, rather a panoply of applications existing in competition or complementing each other. Dave 
spoke on developing an application to support sustainable nutrition security. This application included 
metrics for characterizing sustainability and dietary quality outcomes of food systems. Previous 
applications did not incorporate many of the concepts presented, nor use open source data and methods, 
which are integral for a NextGen application. 

Stan Wood’s Concluding Comments 

Stan Wood’s final comments included a vision of what a NextGen modelling tool could look like, 
incorporating many of the themes discussed at the meeting. Stan then elaborated the Foundation’s role 
in the next steps of NextGen modeling (advocacy, agenda setting), and where the initial focus 
communities should be. Stan pointed out the value in leveraging existing programs in order to take the 
next step to the NextGen of agriculture and food system modeling. 

Stan suggested a user interface with graphical visualization components that provide the user with various 
capabilities such as a drag and drop tool to assemble model components and design a farming system 
model. The user would be able to define the study region, geographies and spatial and temporal scales. 
Data would be real time if applicable (weather, price, expectations on yield), and could incorporate 
elements of machine learning. Software would adhere to best practices and a code of standards for 
interoperability. In addition to further developing the science underpinning model components, the 
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academic community would establish credibility through validation and model inter-comparison using 
standard data. The donor community will need to help finance developments, especially for work focusing 
on smallholder systems.  

The Foundation’s role should not be to pick “winners” but rather to facilitate communities, support 
standards and protocols, and accelerate model improvements and development of applications. One way 
to advance the work would be to take a Use Case in a priority region and use it to test and further develop 
models using the above approaches.  
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Supplemental Material Available in the Convening Dropbox 

1. Background papers 
2. Use Case Summaries (original 5 plus those developed at the convening)  
3. PowerPoint presentations by Session1 

a. Use Cases 
i. Farm Extension Africa (Sander Janssen) 

ii. Early Warning Systems 
iii. Precision Agriculture (Bruno Basso) 
iv. Government (Joshua Elliott) 
v. Nutrition (Ian Foster) 

vi. Agribusiness, service providers, financial services (Richard Conant) 
b. Technical & Institutional Challenges 

i. Big Data Collection & Analytics (Bruno Basso) 
ii. Community Building (Charles Godfray) 

iii. Data Access & Interoperability (Medha Devare) 
iv. Model Assessment & Credibility (Joshua Elliott) 
v. Model Components & Connectivity (Richard Howitt) 

vi. Model Improvement & Tool Development (Amy Faye) 
vii. Private Public Partnerships (Pierre Sibiry Traore) 

viii. User Engagement & Experience (Jamie Kinney) 

 

  

                                                           
1 Dropbox link available upon request. 
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Use Case Summaries 

#1 [Author Team Use Case] 

Title: Farm Extension in Africa 

Farming System: small-holder 

User: farm advisor 

Decision: use new drought-tolerant varieties effectively 

Capabilities: traditional knowledge and new information from research. 

Limitations/Challenges: same models? Diverse conditions need to tailor advice to users. Pests & 
diseases. 

Beneficiaries: farm households 

Outcomes: higher, more stable yields. Improved nutrition. 

#2 [Author Team Use Case] 

Title: Developing & Evaluating Improved Crop and livestock models 

Farming System: Small holder 

User Ag research team/program 

Decision: Investment/research priorities 

Capabilities: existing crop, livestock, and systems models, optimization models 

Limitations/Challenges: yield, limiting factors beyond water and nitrogen, livestock models: species 
composition, rangelands, feed estimates, tradeoffs, individual uncertainty and risk 

Beneficiaries: research institution/farm population 

Outcome: Improved technology 

#3 [Author Team Use Case] 

Title: Investment in Ag Development to support sustainable development 

Farming System: small-holder 

User: Analyst/Advisor 

Decision: Investment priorities to achieve specific outcomes 

Capabilities: crop, animal production, farming system behavior models, landscape decision models 

Challenges: integrating multiple model components, data 
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Outcome: sustainable technology and adoption 

Beneficiaries: NGO & Clients, donors 

#4 [Author Team Use Case] 

Title: Support for precision agriculture to include profit and sustainability 

Farming System: commercial crops 

User: management consultant 

Decision: seeding, fertilization, pest management 

Capabilities: mobile data, point based models 

Limitations/Challenges: integrate data and model, data ownership/management, integrate with 
economic and environmental processes 

Beneficiaries: Farm businesses, advisory services, the environment. 

Outcomes: higher profit, less environmental impact 

#5 [Author Team Use Case] 

Title: Supplying food products that meet corporate sustainability goals 

Farming system: Commercial crop 

User: Corporate analyst 

Decision: farm management and cropping best practices 

Capabilities: real time weather and historical climate data, crop models, integrated platforms for 
farmers 

Challenges: 

Outcome: Sales, profit, sustainability objectives 

Beneficiaries: Agri-business firms 

#6 

Title: Government sector evaluating investment alternatives/policies 

Farming System: Mixed small-holder and commercial farms. 

Information Users: Agencies, NGOs, Industry 

Decision: Investment/policies to pursue (production/profit/health) 

Beneficiaries: Value chain, national, farmers, society-environment 
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Information Requirements: High resolution data (soil, weather, management), resource availability and 
cost (cultivars, water, fertilizer, mechanization), current land use, local preferences, market demand, 
infrastructure (storage, roads, transport) 

Challenges: cloud infrastructure, reading & feeding systems, web APIs, data collection and output 
interpretation, spatialize data 

Outcomes: trade-offs, transparency 

#7 

Title:  Sustainable Nutrition for the Planet under climate change and resource scarcity 

Farming System: All, global-national scale nutrition security 

User: National governments, international bodies 

Decision: Climate change policy, food and ag policy, natural resource conservation, nutritional security, 
international agreements, trade policy 

Capabilities: data availability mixed, model availability mixed, credibility a challenge, needs focus and 
innovation, model inter-comparison, model data, fusion, back casting, big data science 

Challenges: Cross disciplinary, simplicity, need for public private partnerships. 

Outcome: Our kids are not screwed. 

Beneficiaries: Everyone 

#8: Farm-level, Management Decision Support for small-holder farms 

Farming System: mixed crop-livestock system 

Decision Temporal Scale: pre-season – what crop/variety to grow 

In-season – when to apply fertilizer/pesticide fungicide; livestock buy/sell; market conditions; grain 
buy/sell, Yield-risk: profit 

Information Users: Patricia- young farmers, early adopters 

Data Requirements: Good quality & short term season forecast; soils relevant (generalized for area); 
varieties/crops grown; livestock breeds, rangeland 

Current Capabilities: models can currently do most of this, but require a lot of work to generate data 

Challenges: data credibility/need for feedback locally valid; dissemination; pest markup; crowd source 
data 

Outcomes: management options to buy/sell livestock 

Beneficiaries: small-holder farmers; bi directional info flow; support mechanism (tech support/help) sms 
text 
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#9 

Title: Technology Assessment for Dual Production systems for irrigated rice in Ghana 

Farming System: small-scale out growers, subsistence & commerce. 

Information Users: Agronomists with rice buyer, farmer (homesteaders)). 

Decision: Management/Input, package rice variety. Land/labor allocation (rice, subsistence ag). 

Information Requirement: Water req./availability. Seasonal climate forecast. Risks: water, pests, weeds, 
disease. Markers, Yield range, soil/geographic variability, labor availability. 

Challenges: Seasonal (real time), monitoring to assess potential yield, disease/pest early warning (IPM), 
model integration, market projections, training in use/interpretation of new technologies, synthesis of 
model outputs, potential transformation of landscape or other users, transfer learning, adaptive 
management (information requirements), sustainability (pest/fertilizer application, soil management) 

Outcomes: Reducing risk of undertaking rice farming, increasing discretionary income, reducing poverty 

Beneficiaries: farmers and families, rice buyers, local communities 

#10 

Title: Modeling Supporting Early Warning Systems 

Farming System: small-holder farmers in sub-Saharan Africa 

Information Users: Extension Agents, NGOs 

Decision: Livestock – when to sell? What to feed? How to plan for a drought? When to plant? What to 
plant? (Decisions throughout the whole value chain) 

Information Requirements: Weather forecast, variety information, seed availability, soils, livestock 
management practices, stock density 

Key Partners: Food and seed industry, input and output across the value chain 

Scale: Farm and landscape 

Challenges & Limitations: Vital science, early warning for US, Europe, and Australia.  Requires High 
quality data, systems complex with heterogeneity. Weak institutions, lack of high quality data, lack of 
credibility and support systems (lots of risks). Understanding of uncertainty (risk?). 

Beneficiaries: Smallholder farmers, consumers 

Outcomes: improved farmer income. Increased food security in drought years. 

#11 

Title: Peri-urban & urban food Production 

Farming System: Vegetable/fruit production with & around cities 
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Information Users: Urban land use planner 

Decision: Investments in urban & peri-urban infrastructure to support local veggie production 

Information Requirements: Resource needs to support local food production systems 

Capabilities & limitations: Highly distributed base of “farmers” without an significant investment in data 
needs at the system level. Current capabilities and limitations are largely unknown. 

Challenges: Outcomes: Greater availability of fresh fruits/veggies in cities 

Beneficiaries: Consumers, new producers 

#12 

Title: Avoiding Jevon’s paradox: can sustainable intensification really be sustainable? 

Farming/System: Preserving eco-system services in East-Africa as intensification proceeds 

Information Users: Government land use minister/stakeholder 

Decision: Policy-setting & adaptation to evaluate/optimize trade-offs 

Information Requirements: Recent real-time land, water, and resource use data in a map format. 

Challenges/Limitations: General land-use models OK often difficult due to data limitations. Privacy 
Concerns with Big Data socio-economic, data currently very limited ability to model “governance” is 
weak 

Beneficiaries: Public good maximized. 

Outcomes: Improved capacity for governance, trade-offs. Income more equitably distributed; better 
management of natural resources. 

#13 

Title: Medium Term (3-5yr) decision support system 

Farming System: Small holder (or independent larger); has several activities that would increase 
productivity; crop selection/rotation, dig a well multi-year crops (coffee, cacao), terracing, deep 
cultivation, soil amendments, equipment 

Information User: extension or independent farmer 

Decision: identify, prioritize activities over 3.5 years’ time frame 

Information Requirement:  soil, weather, climate, market, cost/benefits of improvements 

Capacities: use many current models, but over different scenarios over 3-5 years. 

Challenges/Limitations: Data and trust in long term planning 

Beneficiaries: Not identified 
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Outcomes: Longer term productivity, more effective, less “knee jerk” decisions. Grower makes decision 
for and over longer term period 

#14 

Title: My government is taking care of me 

Farming System: Small-holder with rice/livestock mixed farming 

Information Users: national & provincial governments 

Decision: Subsidy (N fertilizer) and laying out options 

Information Requirements: demographics; baseline, nutritional status; natural resources such as soil, 
weather etc, human habits (food preferences) 

Current Capability/Limitations: Rice model (Eg FAO tool basket model); USDA/FAS data on Ag 
production; livestock models; human resources to communicate outcomes crop (livestock linkages) 

Beneficiaries: general population, farmer groups 

Outcomes: Information for policy makers to make better decisions on subsidies, environment and 
nutritional outcomes 

#15 

Title: Small-holder in Nepal woman farmer 

Farming System: 

Information Users: small-holder woman farmers 

Decision: Crop choice/diversification to enable profit-making 

Information Requirement: Use & market info, variety info/durability, transport costs, weather 

Limitations: Advisor skills, availability/usability/reliability of local data (soils, weather, price) 

Challenges/Limitations: info-interpretation/presentation (usability); info exchange (rather than 
“delivery’); technical accessibility (inequalities/digital) 

Beneficiaries: farmer/families; community 

Outcomes: increased profits, livelihoods; decrease water resources; increase decision-
making/empowerment 

#16 

Title: Sustainable modeling of agriculture returns and tradeoffs (“SMART”) 

Farming System: small-holder family in Sub-Saharan Africa 

Information Users: Farms, Extension Agents, NGO, Policy Makers 



Appendix

146

18 
 

Decision: Optimize income and land use 

Information Requirements: Crop yields, soil types, water, weather, market access price data, farm size, 
management systems, labor costs 

Current Capabilities & Limitations: Crop models, farming system models 

Challenges: feedback loops, ground-truthing, ensuring local ownership, relevance of models 

Beneficiaries: Farmers 

Outcomes: Not identified 
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Next Generation Agricultural Systems Models  
August 12-14, 2014 
Bill & Melinda Gates Foundation 
500 5th Avenue North, Seattle, WA 
For any assistance, please contact Thomas Bogan (206) 770-2446 
  

Context: 

The purpose of the meeting is to gather a wide group of stakeholders to contribute to a scoping project 
called Next Generation Agricultural Systems Models.  
 
We aim to generate interest and establish a community that can articulate a vision for what Next 
Generation tools can and must deliver and a roadmap of activities to build those tools and begin 
delivering the information products required. The scoping project began with the drafting of three 
background papers (provided to all participants of the workshop). We have invited people to the 
workshop who might not find each other in daily business, but whose skills could be applied to the 
challenges of planning and decision-making for global food security and poverty reduction for the 
world’s smallholder farmers, the particular interest of the Bill & Melinda Gates Foundation 
agricultural development program. The three draft background papers on Next Generation models  
introduce use cases and ideas from an expert author team. Our goal is to have a broader conversation 
around use cases, technical challenges, data, and how we can build practitioner and user communities.  
A key outcome from the workshop will be an agenda for a body of work that will deliver new ways of 
analyzing agricultural systems and delivering improved information products for decision-makers 
(policymakers, investors, companies with products and supply chains involving agriculture, companies 
providing information services, etc).  
 

Overview and Objectives: 

The convening will take place over two and a half days. The first day will be focused around 
developing and discussing use cases that can respond to the information demands set forth by the 
global community addressing agriculture and food security. The second day will address technical 
challenges, identify potential partnerships, and think about how a community can be fostered to 
advance this work. The third (half) day will review the draft papers and gather the community’s input 
and feedback to guide their completion. 

The expected outcomes of this convening are to: 
 Generate realistic use cases that meet real information demands and a roadmap of projects and 

partnerships that could implement them and address related technical challenges. 
 Begin to develop a multi-sectoral and inter-disciplinary community dedicated to applying their 

diverse skills to delivering data, analysis, and information that serves global agriculture, food 
security, and poverty reduction decision-making. 

 Solicit input and feedback into the papers which will begin to establish an agenda for this body 
of work. 
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Agenda             

Day 1: August 12, 2014 

8:30 – 9 Registration  

9 – 9:30   Welcome address & Setting the stage Stanley Wood, John Antle 
We have a diverse group of participants and are looking forward to some out-of-the-box thinking. We 
ask all discussants to participate genuinely as individuals and to remain in the “pre-competitive” 
sphere, and that participants keep focus on our main objectives. 

9:30 – 10:45 Opening Panel: 
 “What do Next Generation Models need to deliver?” 
Panelists: Marc Sadler (World Bank), Hilary Parsons (Nestle), Rob Bertram (USAID), Lystra Antoine 
(DuPont/Pioneer), Wendy-Lin Bartels (University of Florida) 
Moderator: Brian Keating  

10:45 – 11:15 Break  

11:15 – 11:30 Use cases intro  Sander Janssen 
An introduction to the purpose of use cases, structure/format, and an example. 

11:30 – 12:30 Brainstorm: coming up with use cases 
Each table will be given a context to guide the brainstorm and develop a use case within that context. 
For example, farm advisory services in a developing world context. Please select a discussion leader at 
each table and a rapporteur who is responsible for capturing main ideas on the flipchart provided. If 
desired, you may move tables after the first 10-15 minutes of discussion. We ask that the discussion 
leaders and rapporteurs remain at their table for the duration of the exercise.  

12:30 – 1:30 Lunch 

1:30 – 2 Use Cases Gallery Walk, Commenting & Voting 
All use cases, developed today and those from the circulated papers, are detailed on flip charts hung 
around the room. Please circulate and use the post-its to leave comments. In your participant packet, 
you will also find 2 stickers; please vote for your 2 favorite use cases by placing your stickers on the 
relevant flip charts. The use cases with the most votes will be discussed further in the breakout 
sessions that follow.  

2:00 – 2:15 Instructions 

2:15 – 3:45 Use cases breakouts 
Based on the votes, the top 8 use cases will be discussed in breakouts. Participants are asked to select 
which breakouts to attend. Please select a discussion leader and rapporteur in each breakout group, 
which may or may not be the same people who served in those roles earlier, and who commit to 
remaining in that breakout for the duration fo the session. Others are free to circulate as desired. Please 
refer to the flipcharts and comments as a starting point for the discussion. Breakouts are then asked to 
address the following questions: 

 Who are the users? What are their decisions?  
 Who will benefit, and how?   
 What are some of the technical challenges involved? 
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 What input data are needed, and at what time and space resolution? 
 How does the information need to be delivered? 
 In what ways are current systems inadequate? Where are we currently failing to deliver for 

this use case?What are the gaps that need to be filled? 
 What are the outstanding or new challenges that need to be addressed to implement this case 

(technical, partherships, institutional, etc)?  

3:45 – 4 Break 

4 – 5  Reporting back (with challenges for day 2) 
Rapporteurs from each use case provide a short report back (5-7 minutes each). 

5 – 5:15  Wrap-up Peter Craufurd 

6:30 – 9 Dinner 
 The Libarary Bistro (at the Alexis Hotel), 1007 1st Ave. 
 Transportation will be provided from in front of the Gates Foundation at 6:00pm 

Day 2: August 13, 2014  

8:30 – 9 Opening session: Recap from Day 1   Peter Craufurd 

9 – 10:15 Responsive Panel: 
 “What can the tech industry deliver to ag and food systems modeling today?  
 What needs to be developed for tomorrow? How do we better deliver information to users?” 
Panelists: Ashish Kapoor (Microsoft Research), Jason Cawley (Wolfram), Nancy Harvey (University 
of Chicago) 
Moderator: Sander Janssen   

10:15 – 10:45 Break 

10:45 – 12:15 Technical and Institutional Challenges breakouts 
The themes for these breakout session will be selected from those identified during the use case 
breakouts on Day 1, and will be announced at the beginning of Day 2. This session will then provide 
an opportunity to work collaboratively towards a roadmap of potential partnerships and projects that 
could address them. Breakout groups should appoint a chair and rapporteur for the conversation who 
remain in the discussion for the duration of the session, others are free to circulate as desired.  

12:15 – 1:30 Lunch 

1:30 – 2:30        Challenges report back with summary and recommendations 
Rapporteurs report back (5-7 minutes each).  

2:30 – 3:30       Panel: “Opportunities for Innovation in Open Environments” 
Panelists: Jamie Kinney (Amazon), Liz Carolan (Open Data Institute), Dave Gustafson (ILSI Research 
Foundation), Caroline Figueres (IICD), Scott Malcolm (USDA) 
Moderator: Tim Wheeler  

3:30 – 4 Break  
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 4 – 5 How do we foster this community? Peter Craufurd 
We are interested to see a diverse community and partnerships emerge, how can we foster this 
community going forward? A few “straw men” ideas will be described to get the discussion started, 
and then we will open to the group for thoughts, reactions, and ideas. Please consider the following 
questions: 

 Are there other communities and platforms already that are aligned? 
 What new collaborations or partnerships are needed? 
 What would individuals and organizations need/want to stay engaged? 

 

5 – 5:15 Wrap-up Peter Craufurd 

5:15 – 5:20 Housekeeping Announcements Thomams Bogan 

5:30 – 7 Outdoor Reception 
 Gates Foundation, Campus Heart (weather permitting) 

Day 3: August 14, 2014  

8:30 – 8:45 Opening session: Recap from Day 2 Peter Craufurd 

8:45 – 10 World café on papers 
Breakout discussions on each of the papers, chaired by lead authors and joined by their collaborating 
authors. We ask all participants to cycle through multiple discussions in whichever order you choose. 
The goal of the session is for the authors to have a chance to solicit specific input and feedback on the 
papers from the group, in particular: 

 Do the papers articulate the vision? 
 Are the challenges that have been highlighted by the group represented?  
 What is missing?  
 Should new use-cases be added to the papers; if so which one(s) and why? 
 Link to use cases? Which elements should be elaborated more given the discussion on the 

previous days? 

10 – 10:30 Break 

10:30 – 11:45  Author Response John Antle, Cheryl Porter, Jim Jones 
Lead authors on each of the three papers will give a 15 minute summary of what they have heard and 
their plans to move forward with the papers. 

11:45 – 12 Closing words and thank you  Stanley Wood 

12 – 1  Lunch 
For anyone who does not have a flight to catch immediately, we will provide an informal lunch. 
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List of Attendees 

 
Name Organization 

Phillip Alderman International Maize and Wheat Improvement Center (CIMMYT) 
Sandy Andelman Conservation International 
John Antle Department of Applied Economics, Oregon State University 
Lystra Antoine DuPont 
Ioannis Athanasiadis Democritus University of Thrace 
Elizabeth Bandason Lilongwe University of Agriculture and Natural Resources 
Wendy-Lin Bartels University of Florida 
Bruno Basso Michigan State University 
Robert Bertram US Agency for International Development (USAID) 
Thomas Bogan Bill & Melinda Gates Foundation 
John Bolte Oregon State University 
Kenneth Boote University of Florida 
Susan Capalbo Oregon State University 
Liz Carolan The Open Data Institute 
Jason Cawley Wolfram Solutions 
Richard Conant Colorado State University 
Peter Craufurd International Maize and Wheat Improvement Center (CIMMYT) 
Medha Devare Consultative Group for International Agricultural Research (CGIAR) Consortium 

Office 
Patrick Donahue Mondelez International 
Lance Donny OnFarm 
Kofikuma Dzotsi University of Florida 
Joshua Elliott University of Chicago 
Amy Faye ISRA (Senegalese Institute of Agricultural Research) 
Caroline Figuères International Institute for Communication and Development (IICD) 
Ian Foster University of Chicago and Argonne National Laboratory 
Giampero Genovese European Commission 
Charles Godfray Oxford University 
Dave Gustafson ILSI Research Foundation 
Daniel Halperin University of Washington eScience Institute 
Nancy Harvey Institute for Entrepreneurial Studies at University of Chicago 
Mario Herrero Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia 
Jerry Hjelle Monsanto 
Richard Howitt University of California, Davis 
Sander Janssen Alterra, Wageningen University 
Jim Jones University of Florida 
Ashish Kapoor Microsoft Research 
Brian Keating Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia 
Ermias Kebreab University of California, Davis 
Jamie Kinney Amazon Web Services 
Raymond Layton DuPont Pioneer 
Dilys MacCarthy University of Ghana 
Job Kihara Maguta International Center for Tropical Agriculture (CIAT) 
Scott Malcolm Economic Research Service, US Department of Agriculture 
Patricia Masikate International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) 
Isabel Meirelles Northeastern University 
Andrew Moore Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia 
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Siwa Msangi Internationall Food Policy Research Institute (IFPRI) 
Rafa Muñoz-Carpena University of Florida 
Carolyn Mutter Agricultural Models Intercomparison and Improvement Project (AgMIP) 
Vasey Mwaja Bill & Melinda Gates Foundation 
Tuu-Van Nguyen Bill & Melinda Gates Foundation 
Hilary Parsons Nestlé S.A. 
Cheryl Porter University of Florida 
Stephanie Price Oregon State University 
Wilhemina Quaye Council for Scientific and Industrial Research, Ghana 
Alan Rennison Bill & Melinda Gates Foundation 
Cynthia Rosenzweig NASA GISS 
Marc Sadler The World Bank 
Kate Schneider Bill & Melinda Gates Foundation 
Jetse Stoorvogel Wageningen University 
Pablo Tittonell Wageningen University 
Sibiry Traore International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) 
Tim Wheeler University of Reading 
Christian Witt Bill & Melinda Gates Foundation 
Stanley Wood Bill & Melinda Gates Foundation 
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